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Preface

Five years have passed since that humid and hot summer 2015. Those days
were passing by with a mix of euphoria for a very close graduation and the
anxiety of a thesis deadline. Nothing seems to change in our lives. I find myself
almost in the same situation and things keep oscillating around a zero-mean
like a sine. Time and space keep moving and bending without us realizing that
we are in it. However, someone taught us that if we look reality from a different
frame and scale, we could see the dynamics of it. If I may, I will guide you
through a couple of thanks to rewind the last years. We will do it just in a
different space-temporal scale.

I must start thanking my promoter Prof. Sabine Van Huffel, who had the
will and the strength to listen to me after long conference session in that hot
summer. There is a great need of gut to listen to a random Italian student,
to assess his capabilities in less than 45 minutes and to accept him in your
group after 14 days. Sabine, I could write how much I learned from you or
how I am impressed about your work endurance or your grammar abilities.
However, the most important trait that characterizes you as person is surely
the trust that you put in people. I have been witnessing the different cultural,
scientific and social backgrounds of the people that joined our group. Each of
us had a fair shot to contribute to the research of our group. Each of us was
welcome for a dinner at your place or a personal conversation about feelings of
the present and ideas for the future. Each of us was accepted for the scientific
contribution independently from our origin, gender, economical background,
sexual or political orientation. This diversity that you built up year by year
created one of the most bonded research group that you can find in the scientific
community. I could not thank you more for your trust and the opportunity to
feel myself at home far away from home.

The second place of this preface must go to one of the most committed researcher
of all times and a truly public servant. My gratitude has to go to Prof. Alexander
Caicedo. Like the tons and tons of emails that we sent each other, I will go
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through my personal thoughts with a bullet points list. First, I have to get used
to the fact that you have a title next your name. Second, I will never forget
that the first day that I spent in my PhD was with you. Hopefully, it would
be the same for the last. Third, I will never forget your initial teasing and our
start was definitively rocky. Fourth, I will never forget the times that people
could not understand my English and I asked you for help. Fifth, I will never
forget those moments of loneliness that you could soothe with your patience,
kindness and support. Sixth, I will never forget the day that you told me that I
could be whoever I want to be, without strings attached or judgments from our
peers. Seventh, I will never forget the attachment that I felt when you left for
Colombia. Like any engineers, my emotions are hidden behind the gears of our
mind, but I could only realize how close we were only when you left. Eighth,
I will never forget the frustration that I shared with my research throughout
my last year and I will never forget the way you guided me out of it. Ninth, I
will never forget the support that your gave me during my mental lockdown of
the last months. N-th, this list can go to the infinite, but the simple the better,
right? However, I might still need more time to learn how to be concise.

I wanted to thank Prof. Gunnar Naulears, Prof. Els Ortibus and Prof. Katrien
Jansen. Getting the time in your agenda to listen to an Italian engineer was
hard. Getting that extra time to understand what he wanted to say was even
harder. Getting even more extra time to wait the end of his never-ending
presentation was a titanic effort. I cannot be sorrier for the precious time that
I wasted. I cannot be merrier for the time that you granted me to get the
best possible research outcome. Another special thanks also goes to Dr. Bieke
Bollen and once again to Katrien. You are the people that listened to me
the most from the clinical side. You did it during and beyond your working
schedule. And yet, you did it for the passion to see what the electrophysiology
can tell us about our mental health. You did it to help this clumsy and tall
engineer to get out of his shell and communicate with the doctors. You taught
me how to step up my analysis to be useful and understandable to the clinical
community. There were ups and downs like any relationship. I am sorry for
the downward trends and I am glad that we shared the upward trends. If we
apply a repeated-measurements ANOVA test, the ups are significantly more
that downs. I am sure that the findings of the work that we did together and
the time that we spent together confidently support the statement: "I am happy
to have worked with you".

A list of other people from the clinical world has to be thanked for their patience
in collaborating, working or listening to who is writing this text: Dr. Anneleen
Dereymaeker, Dr. Bart Boets, Katrien Lemmens, Prof. Lieven Lagae, Dr.
Jessie De Ridder, Dr. Guy Bosmans. I should thank all the other collaborators
of the Resilience study and the EPISTOP consortium for the time that they
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spent in reading my manuscripts or providing useful feedback for my research.
It should also be highlighted the generous contribution of the Fonds voor
Wetenschappelijk Onderzoek – Vlaanderen with the strategic basic research
grant which supported me in any step of my research.

After an extensive acknowledgment, it is finally the time for the fun part. Where
could I start with Biomed? I should probably give a list of thanks and stop
it there, but it wouldn’t be me, right? Therefore, let me cluster you in an
unsupervised manner. The links among clusters are estimated by imaginary
coherence. I could not start without a cluster of Maricas Cabronas di Girona,
comprised of Amalia AmaraVilla, John El Silvio Morales Tellez, CaroLinda
MasHermosa Varon. Papito John, I simply do not deserve you. The amount of
kindness and support that you provided are not matched by anybody in the
world. I did not only find a smart colleague and a humble person, but I am
proud to call you friend. The reason why you are so special and remain so
special is the amount of people, love and gente that you have around you. I
am sure that you know the etymology of those word by now. Never forget that
your success will always be proven by the beautiful people around you. This
also reminds me to say thanks to Gibran Tonatiu, Sandra, Andrea, Popochita,
la Martha y la familia Tellez Morales. Gibranito, be the guardian of John while
I am traveling around the world. I wanted to say that John is the smartest
person on Earth, but this is merely false. However, the world already knows the
smartest person in our lifetime. The galaxy awaits for her intelligence to bring
the Force into balance. Carolina, I could keep writing a lot of sentences like
this one. The truth is that you are one of a kind, a diamond in the rough ready
to shine in her career. Your beauty does not rely only on your appearance,
youth or intelligence, but it is woven in your listening skills that gave me so
much relief in the last years. Steven, protect and support Carolina until she
reaches the stars. Amalia, Mea Amor, la chica mas roja, a perfect character for
a book about resilience, ecology, adventure and femininism. I have never spent
one single day without being grateful that I met you. The moments that we
spent talking about gender fluidity and the role of women in our society, the
discussion about migration and the books about ecology, the dinners at your
place and the one dinner at my place, the evenings with drinks and ice-cream
will be the source of strength to go forward. In the sad and the good days,
there was always you ready to hear about my stories, plans, dates, failures and
frustrations. Our political differences and our will to make this world a better
place make us a unique dyad and I cannot wait to have more discussions, more
dinners and more evenings with you. No matter wherever it is. No matter
who we are with. No matter who we are gonna be. I just hope that the place
can be reached by bike. By the way, give my regards to Kranti, Jorge, Apu,
Antoine, Mar (I should write a book for this girl too). Giselle and Alex, I did
not forget about you and I hope to reach you in Cuba to spend time together
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again. Esteban, you look amazing in sport clothes. If you can also take care of
Amalia when I leave, it would be great.

The second cluster is the Turkish-Greek group made out of Christos and Cem.
First, you are both Europeans for me. Second, I am happy that I met both of
you. Christos, I will never forget your Greek Wedding. It was a good occasion
to learn new skills. Most importantly, it reminded me of that great human
being that you are. The passion and ideas that you bring in the political arena
are always great food for thoughts. I cannot wait to debate with you again and
to see how the future will unfold for you. Jenny, just take care of this big guy.
Cem, I appreciated all the time that you spent to support and listen to me. I
am sure that a great future is ahead of you. Let me add an Indian appendix to
this cluster. Abhi, I will never stop being amazed by your soccer knowledge.
Besides our common interests in the same media outlets, I am happy that we
could spend time together at coffee corner of the cheerful Italian. Neetha, I
am truly happy to be your colleague/friend and I will always be wherever you
end up working. The dinners and discussions that we had together were special
moments in our lives and I will never forget that you were always available for
my many surprise parties. I just hope that I could visit you in Kerala for your
anniversary and participate to the party afterwards.

The third cluster is the The Flanders Awaken group of Dries, Simon and Ofelie.
Simon, although we have to take into the constraints of Carolina’s presence,
you are one of the smartest person that I have ever met. I am sure that we
should have quarreled more about science. However, I cannot stop thinking
that you are one of the people that supported me the most in my first years
spent in Flanders. Beatriz, please take care of this big boy for me. Dries,
I was wondering which questions or sentence I could write about you. The
only one that I have in mind is: Coffee, free refill? I just hope to travel once
again together with you and an eco-monster truck on the American motorways.
Honestly, I want to write more, but I think that I will send you a very long vocal
message with the rest of my preface and a beautiful presentation in Jean-Luc
Doumont’s style. Ofelie, you are probably a cluster on your own. Let me
apologize for my voice and for my behavior. Nobody knows like you how hard
the first months in Belgium were for me. Everybody knew the cheerful Mario,
but you had the will to listen to the sad Mario. You brought me tea and candies
when I felt far away from home. You showed me your city and host me at your
place. We cooked together so many cakes in double the time that was required.
We ran trails and half-marathons together. You sent me a beautiful picture by
post in this difficult lockdown. We went a long way together and I have a small
request. I hope to meet you once again in our future and laugh at ourselves
looking back at our PhD.

The Gym Boys, Jonathan and Jasper, make the fourth cluster. Mr. Wouters,
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I will never forget the mariofy.py program and your tongue-in-cheek humour.
However, I always appreciate your help at any given time and the effort to listen
to my vocal messages. Your (hidden) kindness was never unnoticed and I am
sure that this is your effort to make the world 10% happier. Mr. Moeyersons,
your open-arms policy is the true gem of your virtues. The inburgering is the
toughest challenge for someone who moves to another country, but you made it
the best time ever. Lene (or Nele?), be sure that this boy keeps helping the
world in the amazing way he does. Try also to free up space in his agenda. I
can also attach Thomas De Cooman to this cluster. I am sure that you had to
break your stay-away-from-me policy to get to know me. Many people knows
you for the jokes and funny comments, but I am very grateful for the time that
you spent with me beyond your comfort zone. Nele (or Lene?), just take care
of him. I am not so sure what’s the Euclidean distance between this cluster
and those two guys, but let me also thank Lieven and Adrian IM. Lieveni, ego
eram vultus in amicitia et thesaurum in auxilio tuo inveni. Adrian, you had
a rough time to bear my voice and my presence, but let me thank you again
for the friendship that you granted me. Who is missing? Wait... Alexander B.,
you are an outlier and you did not expect a location in this preface for you, for
sure. Like many others, you had to endure my gravitational-sound waves in
your office. Unlike many others, you clearly state our friendship and my heart
simply melted for that. I cannot wait to see your future research achievements
and the amazing PhDs that you are going to guide.

The Vlaamse Meisjes is the fifth cluster with Griet, Dorien, Kaat, Margot and
Laure. Kaat, thanks again for the swimming time and I apologize for being
competitive. Margot, I just hope that your future parties always have a DJ
for the entrance of the wine. Dorien, keep staying the true Austrian that you
are. Griet, you can blackmail me at any time. And yet, I am so proud how our
friendship turned out to be. We truly share a lot of interests, such as a vivid
interest in Politics. I am sure more than ever that I found a new friend. Laure,
just never give up your ideas. Your passion and your interest in science is what
makes you the great person that you are. Since I do not like homogeneous
groups, let me add Ying and Bori. Ying, you were an amazing neighbor and
the residence was never the same without you. Bori, any English sentence with
a double meaning can be a threat to my freedom and you understood that I
am out like a balcony. However, you always found the time to the listen to my
very very long vocal messages. Thanks once again. Just say to Adhi: Beautiful
there! This cluster has also an internal module of Honor students, Elisabeth
and Laura. Girls, you were for sure brave to choose me as supervisor. Let me
say that I am proud to see your contribution to the scientific community.

The NeoGuard people is the seventh cluster with Amir, Tim and Nick. Amir,
the adventures that we had together are legendary. The time that we spent
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together in the office was less legendary for you, but my research would have
never seen the light of the day without your µ-God help. Neda, take care of this
guy. Tim and Nick, you were unlucky to meet me and I apologize if I pulled
your leg. I am happy that we shared time together and let me say one thing:
Get the PhD done!

The newcomers group is the eight cluster with Simon G., Jorian, Tim, Kenneth,
Thomas S., Jonathan D., Stijn, Nithin, Miguel, while the tensor group is
comprised of Nico, Rob and Martijn. I apologize for the loud voice and I am
happy that we shared lunch together. Simon G. and Jonathan, you will always
be newcomers for me. Nico, I am sure that a great future is ahead of you. I
am happy that you could laugh and accept my extravagance. Rob, we had our
differences, but I am sure that we are going to miss each other.

The Indo-Flemish crew is the cluster of Sheena, Harini, Natasha, Camille, Laura
and Bobby. Sheena and Bobby, you are just my friends. I want to say out loud:
friends! You gave me an unconditional trust without any scientific or working
related interest. You love me for my strange way of life, doing sport or being
loud. We discovered the world by running around it. I had with you one of the
best trip of my life in Munich. I hope that we can do it again to remind us
the great group of friends that we are. Harini and Natasha, I am truly grateful
to all our gods for our friendship. You will never admit that, but we like each
other and we cannot live without texting something ridiculous. I cannot wait
to see how our next discussion turns out to be. Camille, you have one of the
most amazing skin of all times and I hope that I always have the chance to
hug you. Can I still add another person? Marleen, I was probably the craziest
student that you have ever had. I am extremely grateful for you guidance. I
am not only able to speak a better English thanks to you, but I can also deliver
emotions. This skill is what brings bliss to our lives.

Il cluster Belgium Unposted-World of Lipsticks contiene Gaia, Federica,
Manuela, Giorgia Carrà Carraramente Carrara, Agnese, Jessica. Ragazze,
siete sicuramente le più belle ragazze del Belgio. Anzi, le più belle ragazze
dell’Europa. Anzi, le più belle ragazze del mondo. Federica, sei molto meglio
della persona disperata che credi di essere. La tua forza di volontà ti ha fatto
conoscere una lingua ostica come l’olandese o ti ha portato in Vietnam con Gaia.
Sappi che sono felice di essere tuo amico e sono sicuro che uscirai vittoriosa da
tutte le faccende affaccendate in cui ti trovi. Gaia, sei davvero una persona
unica e semplicemente non ti merito. Se ti guardi attorno, il mondo è pieno
di uomini che ti potranno rendere felice. La tua bellezza, bontà e intelligenza
sono perle rare e mi hanno permesso di sopravvivere nei momenti più difficili
del lockdown. Farò sempre quel che posso per regalarti un sorriso (con un film
Disney o un bento B) e ti aspetterò fino ai 40 anni, se questo ti rende felice.
Sono convinto però che il futuro avrà molte sorprese in serbo per te.
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Non dimentichiamoci il cluster del presidente! Parisi, Valentina, Themelis,
Alessandra, Agnese, Melania, Giovanna, Giulio e la Prosciutto. Parisi, sei stato
il primo ad ospitarmi in una casa accogliente nei primi mesi di quest’avventura
e le cene (di tua mamma) sono state riferimento essenziale per la mia ricerca.
Valentina, spero di poterti raggiungere ovunque facendo il pendolare su qualsiasi
Freccia Rossa europeo. La nostra amicizia è cominciata sicuramente in maniera
particolare. Spero solo che un giorno ci potremmo rivedere per una bella cena
del Primo di Maggio (a base di coniglio?). Themelis, sei più bello e intelligente
di quanto vuoi far credere. Alessandra, nulla potrà ripagare le cene nel più
bell’attico di Leuven. Sappi che la tua bellezza, forza e intelligenza ti porteranno
molto lontano, piú di quello che credi. Agnese, Giovanna, Melania, Giulio e
Federica, le cene a casa vostra sono state fondamentali per riscaldare e colorare
il grigiume delle giornate in Belgio. Notare che questo paragrafo ha una densità
elevata del pattern "mangiare", in vero stile prof. Prosciutto (il cui riferimento
è anche nella mia tesi adesso).

Non potevo non concludere con il cluster del Bettolino con Luca, Federica,
Maura, Antonio, Alessio e la Ferri. Dovrei scrivere un milione di scuse per tutti
i compleanni che mi sono dimenticato, ma il mio Italiano si è arruginito a tal
punto che è meglio evitare (altro che arena arenata). Ragazzuoli, che ci piaccia o
meno, il nostro legame è più eterno delle banche vaticane o dell’ASOCROMICHE
(concedetemi la licenza poetica). Nella buona e nella cattiva sorte, mi avete
sempre ascoltato e supportato anche se ho gli atteggiamenti da lupo solitario.
Non vedo l’ora di tornare a fare un giro-pizza all’Oca Giuliva e non potrei essere
più orgoglioso di chiamarvi amici.

E infine, il core-cluster o il gruppo più importante di tutti è la mia famiglia.
Vito, non hai mai visto di buon occhio le mie scelte da girovago, ma le hai
sempre rispettate. Apprezzo tutti i tuoi sforzi per accettarmi come sono e sono
sicuro che dovunque il mio destino mi porterà sarai sempre al mio fianco. Elena,
Leonardo, Massimo, Arianna, siete e rimanete i regali più grandi che la vita
mi ha fatto. Per quanto io possa essere lontano, non smetterò mai di volervi
bene. Mamma e Papà, quanto dolore vi ho provocato con le mie scelte. Spero
che io possa essere una ragione di orgoglio e ogni successo che ho ottenuto e
otterrò è soprattutto merito vostro. Isabella, l’unica vera donna della mia vita,
la mia cantante preferita e la prossima popstar mondiale. Nel bene e nel male,
sei e sei sempre stata la mia ancora di salvezza. Il nostro indissolubile legame ci
supporta e ci rafforza per le nostre sfide. Ogni volta che ci separiamo è doloroso.
Ma sappi che in ogni battaglia, in ogni sconfitta e in ogni vittoria tu rimani la
stella polare e la colonna sonora che mi guidano nei prossimi passi.

Mario
Leuven, September 2020





Abstract

This thesis focuses on the design of various automatic signal processing
algorithms to extract information from physiological signals of preterm infants.
Overall, the aim was to improve the neurodevelopmental outcome of the neonate.
More specifically, three main research objectives were carried out. The first
objective was to describe the maturation of neonates during their stay in the
neonatal intensive care unit. The second objective was to assess the stress and
pain in premature infants and their impact on the development of neonates.
The third objective was to predict developmental disabilities, such as autism.

The first part of this thesis presents an extensive overview of various
developmental models to describe the maturation of premature infants. Three
main strategies were proposed. The first strategy proposed an investigation of
EEG connectivity networks. A variety of functional and effective connectivity
methods were combined with an assessment of graph properties of the resulting
EEG network. A set of topological and spectral indices were used to predict
the age of the infants and to demonstrate that the functional and effective
connectivity decreased with development, characterized by a shift from a small-
world network to a more random network. The second strategy focused on
the multifractal properties of the EEG signal, which were investigated to
detect quiet sleep in premature infants on the one hand, and to describe
developmental changes of the EEG on the other hand. The fractal paradigm
showed a decrease of EEG regularity with increasing age. The last strategy
reported the trends of heart-rate variability in premature infants to describe the
development of the autonomic nervous system. Similar to the EEG analysis, the
autonomic parameters showed a decrease of fractal regularity and an increase
in short- and long-term variability of the tachogram. Most importantly, a full
description of the autonomic maturation in premature has to take into account
the roles of heart-drops, known as bradycardias, and new metrics to define the
sympathovagal development.

The second part focuses on the quantification of perinatal stress in premature

ix
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infants. Firstly, the effect of stress load was investigated during bradycardia
and hypoxic events. We established that stress-load and early-life experiences
can enhance desaturations, EEG regularity and brain-heart connectivity during
bradycardias. Secondly, we processed physiological background activity of
premature infants without any pain elicitation. This unobtrusive approach
showed a moderate association between physiological features and perinatal
stress. More specifically, stress seemed to induce a more dysmature EEG,
characterized by more discontinuity and slow-wave activity, a more synchronized
EEG network, and a stronger brain-heart coupling. In addition, the effect of
stress on preterm development during their hospital stay was examined and the
discontinuous EEG seemed to persist throughout the infants’ maturation.

The third part reports an application of early-life EEG analysis, in which we
aimed to predict neurodevelopmental disabilities, such as autism spectrum
disorder. Based on EEG dysmature traits in the first month of life, such as
discontinuity and slow-wave persistence, we showed that different classification
models were capable to predict the autism diagnosis at 24 months and
other developmental abnormalities (such as a lower cognitive outcome). The
quantitative analysis of EEG confirmed the central role of dysmaturity attributes
(the lower EEG entropy, the higher EEG regularity and a greater brain network
resilience) as the most predictive attributes of developmental abnormalities and
disorders.



Beknopte samenvatting

Dit proefschrift richt zich op het ontwerp van verschillende automatische
signaalverwerkingsalgoritmen om informatie te extraheren uit fysiologische
signalen van premature baby’s. Het voorname doel hierbij was het verbeteren
van de neurologische ontwikkeling van de pasgeborene. Hiertoe werden drie
onderzoeksdoelstellingen uitgevoerd. Het eerste doel was het beschrijven van de
maturatie van de pasgeborenen tijdens hun verblijf op de neonatale intensive care
unit. Het tweede doel was het beoordelen van stress en pijn bij premature baby’s
en het bepalen van de impact van beide op de ontwikkeling van pasgeborenen.
De derde doelstelling was het voorspellen van ontwikkelingsstoornissen, zoals
autisme.

Het eerste deel van dit proefschrift presenteert een uitgebreid overzicht van
verschillende ontwikkelingsmodellen om de maturatie van premature baby’s te
beschrijven. Hierbij werden drie verschillende strategieën gevolgd. De eerste
strategie bestudeerde EEG-connectiviteitsnetwerken. Een aantal functionele en
effectieve connectiviteitsmethoden werden gecombineerd met de beoordeling
van verschillende graafeigenschappen van het resulterende EEG-netwerk. Een
verzameling van topologische en spectrale indices werd gebruikt om de leeftijd
van de zuigelingen te voorspellen en om aan te tonen dat de functionele en
effectieve connectiviteit afnam met ontwikkeling. Qua structuur werden de
netwerken gekenmerkt door een verschuiving van een ‘small-world’ netwerk naar
een meer willekeurig netwerk. De tweede strategie bestudeerde de multifractale
eigenschappen van het EEG-signaal, enerzijds om stille slaap bij premature
kinderen te detecteren en anderzijds om de ontwikkelingsveranderingen van
het EEG te beschrijven. Het fractale paradigma toonde een afname van de
EEG-regelmaat met toenemende leeftijd aan. De laatste strategie rapporteerde
de hartslagvariatie bij premature baby’s om de ontwikkeling van het autonome
zenuwstelsel te beschrijven. Gelijkaardig aan de EEG-analyse, vertoonden de
autonome parameters een afname van de fractale regelmaat en een toename van
de variabiliteit van het tachogram, zowel op de korte als op de lange termijn.
Belangrijk hierbij is dat een volledige beschrijving van de autonome maturatie

xi



xii BEKNOPTE SAMENVATTING

bij premature baby’s rekening moet houden met de rol van trage hartslagen,
bekend als bradycardieën, en met nieuwe meetgegevens om de sympathovagale
ontwikkeling te definiëren.

Het tweede deel van dit proefschrift richt zich op het kwantificeren van perinatale
stress bij premature baby’s. Hiertoe werd allereerst het effect van stressbelasting
onderzocht in periodes van bradycardie en hypoxie. Hier stelden we vast dat
stressbelasting en vroege levenservaringen desaturaties, de regelmaat van het
EEG en de connectiviteit tussen de hersenen en het hart in periodes van
bradycardie kunnen vergroten. Vervolgens onderzochten we de fysiologische
achtergrondactiviteit van premature baby’s zonder pijn. Deze onopvallende
benadering toonde een matig verband tussen fysiologische kenmerken en
perinatale stress. Stress leek een meer dysmatuur EEG, gekenmerkt door
meer discontinuïteit en langzame golfactiviteit, een meer gesynchroniseerd EEG-
netwerk en een sterkere hersen-hartkoppeling te veroorzaken. Daarnaast werd
het effect van stress op de vroegtijdige ontwikkeling van de neonaat tijdens het
ziekenhuisverblijf onderzocht en leek de discontinue EEG aan te houden tijdens
de maturatie van de neonaten.

Het derde deel van dit proefschrift rapporteert een toepassing van EEG-
analyse op jonge leeftijd, met als doel het voorspellen van neurologische
ontwikkelingsstoornissen, zoals autismespectrumstoornissen. Op basis van
EEG-dysmaturiteitskenmerken in de eerste levensmaand, zoals discontinuïteit
en trage-golf persistentie, toonden we aan dat verschillende classificatiemodellen
zowel de autismediagnose na 24 maanden, als andere ontwikkelingsstoornissen
(zoals een lagere cognitieve uitkomst) konden voorspellen. De kwantitatieve
analyse van het EEG bevestigde de centrale rol van de dysmaturiteitskenmerken
(een lagere entropie van het EEG, een hogere regelmaat van het EEG en een
grotere veerkracht van het EEG-netwerk) als de meest voorspellende attributen
van ontwikkelingsstoornissen.
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8.12 EEG complexity in nQS (panel a) for patients with post-
menstrual age ≤ 32 weeks, the range EEG asymmetry in nQS
(panel b) for patients in the range between 34 and 36 weeks and
the δ2 power during QS for patients with post-menstrual age > 36
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Kruskal-Wallis test and the multicomparison tests significance is
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9.2 Complexity Index in non-quiet sleep. The panel a) reports how
complexity index trends with development differ in case of high
or low amount of skin breaking procedures. The magenta curve
shows the trend with SBPs above 50 or HIGH SBPs, while
the green curve shows the maturation curve for SBPs below 50
or LOW SBPs. Both the curve shows an increasing CI with
increasing age, but the magenta curve has slower development
(lower slope) and lower CI at full-term age. The blue/green
triangles represent the patient with low SBPs (N = 73) and
red/orange circles the HIGH SBPs (N = 19). The 3D plane
confirms the effects on complexity index by stress. The panel b)
represents the cloud of complexity index data points for each PM
age and each SBPs value and the associated linear plane fitting.
The highest value of complexity on the plain is obtained for the
oldest age and the lowest SBPs, while the lowest complexity is
reached for the youngest age and the highest SBPs. This aspect
is also highlighted by the color scale, which goes from blue for
the lowest value to yellow for the highest value. The yellow is
reported for the highest complexity value on the top left of the
plane, while the color blue is reported on the right bottom of the
same plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
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9.4 rEEG Asymmetry and HF Oscillations: the most vulnerable
patients. The figure shows the association between the rEEG
asymmetry in the α band (asymm, Left Panel A) and early
skin-breaking procedure (SBPs) and the association between HF
oscillations of the tachogram P(HF) and SBPs (Right Panel B).
Data are reported for the patients with gestational age below
29 weeks during QUIET sleep (QS). The panels show how the
asymm and PHF maturational trend differs in case of HIGH
SBPs (magenta curve, SBP ≥ 50) compared to LOW SBPs (green
curve, SBP < 50). SBPs seem to increase the level of asymm
throughout the development. Furthermore, the HF oscillations
have consistently higher magnitude with HIGH SBPs compared
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9.5 LF Oscillations in QUIET Sleep: vulnerable patients. The
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development differ in case of high or low amount of skin breaking
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50 or HIGH SBPs, while the green curve shows the maturation
curve for SBPs below 50 or LOW SBPs. Data are reported for
the patients with gestational age below 29 weeks (N = 31) during
QUIET sleep (QS). Steeper increase in LF power are observed in
HIGH SBPs group compared to the LOW SBPs group, which is
confirmed by the 3D plane on the right panel b). P(LF) increases
in case of higher post-menstrual age (PMA) and high SBPs (in
logarithmic scale), while the LF power seems to have a lower
value (in blue) when both SBPs and the age are low. This aspect
is also highlighted by the color scale, which goes from blue for
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10.1 A schematic overview of the four strategies implemented in this
analysis. The BSID-III stands for the Bayley Developmental
Scale, ASD is autism spectrum disorder and THR is the threshold
applied to define an abnormal Bayley outcome. After EEG
preprocessing, a set of power, entropy, fractality, range EEG
and connectivity features are derived to quantify the level of
EEG dysmaturity. Those features are fed in different supervised
discrimination strategies: 1) binary classification for ASD
diagnosis with linear discriminant analysis (LDA), 2) binary
classification with LDA for development abnormality diagnosis
(ABN), 3) multiclass classification with LDA to determine if
infants have ASD or if infants have only an abnormal BSID-III,
4) Regression analysis to extrapolate the Bayley score. The four
supervised strategy blocks are fed with both features and the
ground truth labels ASD, BSID-III (blue thin lines, BSID-III
after threshold THR or the actual continuous variable for the
regression analysis) and they have the prediction of ASD or
abnormal outcome (dashed grey lines). . . . . . . . . . . . . . . 226

10.2 The figure shows two examples of full montage of EEG from the
no ASD group (NO ASD, upper panel) and the autism spectrum
disorder (ASD) group (lower panel). The data from the 8 channels
are reported in a window of 150 sec and the associated entropy
at scale 20 MSE(20) and the Hurst exponent are displayed if
and only if the threshold criteria discussed in the text are met.
The ASD EEG has lower entropy and higher Hurst exponent,
which leads to a more discontinuous channel with slower rhythms.
On the contrary, the EEG of patients without ASD has faster
frequencies and higher entropy at larger scale. Therefore, the
ASD EEG can be considered a dysmature EEG. The sensitivity
of the plotting is reported on the top left of the chart. . . . . . 227

10.3 The figure shows the entropy at scale 20MSE(20) and the Hurst
exponent in the two groups (NO ASD = No ASD, ASD = Autism
Spectrum Disorder). Both describe the persistence of slow-waves
and discontinuity. In the case of ASD, the EEG presents a
dysmature or disorganized pattern, since the regularity of the
signal is higher due to spikiness, lack of smoothness and general
discontinuity. The enhanced and abnormal slow-wave information
in the disorganized EEG lowers the entropy at lower frequencies
(MSE(20)). P-values have been derived with Kruskal-Wallis test.
The symbols ∗ and ∗∗ respectively represent post-hoc comparison
with p ≤ 0.05 and p ≤ 0.01. . . . . . . . . . . . . . . . . . . . . 234
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10.4 Binary classification performance in function of the threshold
applied to BSID-III (BayleyTHR) to define the positive class.
The two panels report the linear discriminant analysis area under
the ROC curve (AUC) and Kappa score for the classification of
the normal vs abnormal development group for each group of
features. The abnormal group contains at least one developmental
problem (ASD or abnormal Bayley). The Bayley Threshold has
been used to define the abnormal Bayley outcome for each of
the three investigated scores (cognitive, motor and language
outcome). The reported groups of features are power, entropy
(MSE), range-EEG or NEURAL features (rEEG), connectivity
(Conn), fractality (MFA) and all the features combined (All).
Each AUC and Kappa score chart is reported in different colors
and different symbols for each feature group. . . . . . . . . . . 235

10.5 The figure shows the entropy at scale 20MSE(20) and the Hurst
exponent in the three groups (Normal = Normal Development,
ABN-Bayley = only abnormal Bayley outcome , ASD = ASD
patients). Both describe the presence of slow-waves persistence
and discontinuity. The combination of ASD and abnormal
development shows a more severe increase of regularity compared
to other groups (especially, in the occipital area) and a more
severe decrease of entropy compared to other groups (especially,
in the frontal area).P-values have been derived with Kruskal-
Wallis test. The symbols ∗ and ∗∗ respectively represent post-hoc
comparison with p ≤ 0.05 and p ≤ 0.01. . . . . . . . . . . . . . 236

10.6 The figure shows the entropy at scale 20MSE(20) and the Hurst
exponent in function of the Cognitive BSID-III score. The two
panels reported the cluster of data points (circles with a color
for each patient), the expected value of the considered feature
for each Bayley score (pink thick line) and the 95% confidence
intervals (pink dashed lines). The left panel clearly shows that
the higher the Bayley score the higher the entropy at scale 20,
while the right panel shows that the higher the cognitive score
the lower the Hurst exponent. The figure confirms that both
entropy and the regularity are features of brain dysmaturity,
and are related to developmental outcome in ASD subjects. In
addition, the increase ofMSE(20) underlines how the persistence
of slow-waves is related to a worse developmental outcome. . . 237
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10.7 The measure of network redundancy is shown for the three
different study groups: normal, abnormal Bayley outcome
(Bayley < 80) and ASD with an abnormal Bayley. As shown by
the second and third panel, the number of superfluous connections
(nsup) is higher in case of development abnormalities. . . . . . . 238
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Chapter 1

Introduction

1.1 Problem Statement

The worldwide premature populations account for 10% of all births [28].
Although the survival rates of those patients have steadily increased in the
last 10 years, premature infants are prone to a variety of different neurological
sequelae as well as lower cognitive outcomes compared to their matched age peers
[32],[150],[164]. Therefore, prematurity remains a primary concern for healthcare
authorities for both the associated health costs and the necessity to prevent
and address the social and educational costs of a lower neurodevelopmental
outcome population.

Brain insults, such as ventricular hemorrhage and leukomalacia, can be easily
monitored with imaging tools, but chronic brain abnormalities and other subtle
factors can be invisible to structural analysis [262]. In addition, tools such as
MRI or ultrasound might be either expensive or burdensome for the patient. On
the contrary, monitoring vital signs, such as heart-rate variability, or the EEG
might not simply be cheaper alternatives, but they can probe and investigate
the autonomic and central nervous system state under chronic abnormalities
[123],[131], [184],[262]. Functional monitoring and the assessment of maturation
of the brain and the autonomic nervous system can assist in the early detection
of perinatal factors which can affect the development of the infant. Among
these factors, pain and early-life exposure to stress might impact brain volumes
and subcortical areas such that premature infants can undergo lower cognitive
and behavioral outcomes [101],[215].

However, the interpretation of electrophysiological patterns, especially in the
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EEG, can be extremely complex for clinicians and the visual detection of any
pattern risks to be time-consuming. Therefore, the automatic detection of
exposure to stress, pain or any early-life subtle factor might be helpful for
the pain and stress management and preserve the future development of the
infant. In general, clinicians look for automatic methods to track maturation
in the NICU and possibly relate pain or early-life experience to the future
neurodevelopment outcome in order to tune therapies and preventive strategies.

There is a variety of methods to automatically detect hemorrhage or
leukomalacia, as well as seizures [197]. Furthermore, different algorithms have
been developed to detect quiet sleep and sleep-wake cyclicity [9],[67]. In parallel,
different algorithms to assess pain using physiological signals have also been
developed. Under different types of noxious stimuli and intensities, several
authors showed that pain can be detected from the EEG, fMRI, HRV or EMG
[41],[102],[170]. However, these studies employed pain elicitation, focused on
adults and they did not look into the effects of cumulated stress. As far as the
premature infants’ physiology is concerned, the cortical activity of the brain was
investigated under heel lance condition [236], but there is no automatic method
to retrieve pain or background stress from premature infants. In order to tune
both analgesia strategies and preventive care for the development, clinicians
need physiological biomarkers linked to stress and relate them to development.
Pioneer studies examined the maturation of infants based on the quantitative
analysis of EEG [190],[192]. However, they mainly concentrated either on good
outcome population or severe pathologies and they focused on the decrease
of EEG discontinuity. Fewer studies investigated different modalities or the
interaction among those to assess the development of the infants. Furthermore,
up to our knowledge, studies about stress detection by infant’s electrophysiology
and about infant’s development under stress or pain load were not published
yet.

The objective of this thesis is then threefold. The first aim is to investigate
whether biomedical signal processing automatically track maturation of
premature patients in the NICU. The second aim is to investigate methods to
assess stress and procedural pain automatically using the physiological data
and its effect on patient’s maturation. The third aim is to investigate the
relationship between abnormalities of EEG and the neurocognitive outcome of
infants, such as autism or intellectual disability.



THE RESILIENCE STUDY AND OTHER COLLABORATIONS 5

1.2 The Resilience study and other collaborations

The Resilience study is a multidisciplinary project that seeks a greater
understanding of perinatal stress and its effects on infants during their stay at the
neonatal intensive care unit. The concept of perinatal stress and the potential
impact on development are a multifactorial concepts, that include physiological,
psychological and interrelation aspects. The complexity of perinatal stress
and the challenges to record and analyze data of preterm infant required a
collaboration among the following KU Leuven research groups:

• Prof. Gunnar Naulaers, Dr. Anneleen Dereymaeker, Prof. Christine
Vanhole. Department of Development and Regeneration, Woman and
child. University Hospitals Leuven, Neonatology.

• Prof. Sabine Van Huffel, Mario Lavanga, Department of Electrical
Engineering (ESAT), STADIUS Center for Dynamical Systems, Signal
Processing and Data Analytics, KU Leuven.

• Prof. Johan Verhaeghe, Department of Development and Regeneration,
Woman and Child. University Hospitals Leuven, Obstetretics and
Gynaecology.

• Prof. Katrien Jansen, Department of Development and Regeneration,
Locomotoric and Neurological Disorders. University Hospitals Leuven,
Child Neurology

• Prof. Els Ortibus, Department of Development and Regeneration,
Locomotoric and Neurological Disorders. University Hospitals Leuven,
Child Neurology.

• Prof. Stephan Claes, Department of Neurosciences, KU Leuven.

• Prof. Bart Boets, Department of Neurosciences, KU Leuven.

• Prof. Guy Bosmans, Department of Psychology and Educational Sciences,
KU Leuven.

The project also relies on the expertise and the valuable contribution of Prof.
Alexander Caicedo. Originally from the STADIUS group, he is currently
professor at School of Engineering, Science and Technology, Universidad del
Rosario, Bogotá, Colombia. The project had the following objectives: to collect
physiological, psychological and endocrinological data related to perinatal stress
from a cohort of preterm patients and their parents; to quantify the level of
stress by automatic scoring derived from the electrophysiological data; to assess
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its impact on the infant’s development by a variety of assessments after the
infant’s discharge.

The study population consisted of 136 preterm infants, which were included in
the study project between July 2016 and 2018 in the Neonatal Intensive Care
Unit (NICU) of the University Hospitals Leuven, Belgium. Parents of preterm
infants born before 34 weeks gestational age (GA) and/or with a birth weight
less than 1500 g were informed within the first three days after birth. Exclusion
criteria were parents age < 18 years, absence or limited knowledge of Dutch or
English, medical (somatic or psychiatric) condition in the parent(s) that impeded
participation, and the presence of a major congenital malformation or central
nervous system pathology (grade 3 or grade 4 intraventricular hemorrhage or
periventricular leukomalacia) at the time of consent. The research protocol
was examined and approved by the Ethical Committee of University Hospitals
Leuven, Belgium. The study was performed in accordance with the Guidelines
for Good Clinical Practice (ICH/GCP) and the latest version of the Declaration
of Helsinki. It was registered at Clinical Trials.gov (NCT02623400).

The current thesis focuses on the STADIUS’s contribution to develop a model
which automatically detects perinatal stress and quantifies the impact on
development. The research of Mario Lavanga was generously supported by the
Strategic Basic Research grant from Fonds voor Wetenschappelijk Onderzoek
(FWO), Vlaanderen. The automatic analysis to detect stress and assess
development was firstly developed on a dataset of 30 healthy preterm neonates,
who were recruited for a larger study to assess brain development between 2012
and 2014 at the same neonatal intensive care unit (NICU), in the University
Hospitals Leuven, Belgium, with informed parental consent. A total of 26
neonates presented normal neurodevelopment outcome at 2 years from the
birth, while 4 subjects were declared normal at 9 months (Bayley Scales of
Infant Development - II, mental and motor score > 85). This recruitment was
conducted and coordinated by Dr. Anneleen Dereymaeker and Prof. Gunnar
Naulaers. Furthermore, the potential applications of the automatic scoring of
electrophysiological data in relationship with developmental outcome was also
tested on a cohort of 61 patients of the EPISTOP project, which is a multicentre
and prospective study (NCT02098759). The EPISTOP consortium aims to
assess biomarkers of epileptogenesis in tuberous sclerosis complex and to analyze
whether preventive treatment before seizure onset could improve epilepsy and
neurodevelopmental outcome in TSC children at two years of age. The patients
were enrolled from November 2013 to August 2016 at 10 different sites, after
the approval of local ethical committees. Informed consent was obtained from
caregivers in accordance with the Declaration of Helsinki.
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1.3 Outline of the thesis

This thesis is divided into five parts. Part I deals with the physiological and
mathematical background behind this research and the different algorithms
which were employed for the extraction of physiological biomarkers to assess
stress, development and their relationship with the future neurodevelopment
outcome. Part II shows a variety of maturational models to estimate the age of
the subject directly from the physiological data. Part III discusses how stress
can be assessed from physiological measurements, either looking at specific
events, behavorial states or interaction among different modalities. Part IV
shows how the same features used to describe maturation models can be used
to predict autism or developmental delays. Part V summarizes the results of
all chapters and provide future directions for this research. The codes used
in the studies of Chapters 4, 5, 6, 7 and 8 will be made publicly available
on the following GitHub page https://github.com/mlavanga. A graphical
representation of the thesis structure is reported in Figure 1.1. A more detailed
explanation of the thesis is presented in the following section.

Part I: Introduction

Chapter 1 is the current chapter and is meant to introduce the problem
statement and the research objectives of this thesis. The organization of the
different chapters is also laid down.

Chapter 2 provides an overview of the epidemiology of prematurity and the
associated neurological sequelae and the neurodevelopment outcome. It proceeds
with the description of the different functional monitoring, such as EEG and
HRV, which can be used for the assessment the neurophysiological state and
maturation of the infants. The last part focuses on the description of the
epidemiology pain and stress in the premature infants and their impact on the
patients’ development. The chapter concludes on the recent work to assess pain
directly from the EEG reactivity on the cortex.

Chapter 3 describes the different automatic methods that can be used to
extract biomarkers from EEG and HRV to automatically assess brain maturation,
stress and pain exposure and neurodevelopment delays. The first part is
dedicated to the univariate analysis of the physiological time series. The
second part explains the multivariate analysis to assess the relationships among
biomedical signal and the topology of the associated network. The last part of the

https://github.com/mlavanga
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chapter delves into the different supervised learning strategies, both classification
and regression models, to detect stress and describe the development of the
patients and the associated development metrics.

Part II: Preterm Maturation

Chapter 4 presents an automated algorithm for the assessment of brain
maturation in a preterm EEG dataset based on effective and functional
connectivity. Different regression models based graph features are presented to
predict the age of each recording. The capacity to properly describe different
network topologies is also been tested via simulated data. Furthermore, the
effect of volume conduction is also discussed in relationship to the different
coupling methodologies.

Chapter 5 presents a fractal analysis of the neonatal EEG in relationship with
sleep staging and brain maturation. First, a fixed-size LS-SVMs to discriminate
sleep states by means of multifractality features is presented and its relationship
with brain maturation is assessed. Second, a linear-mixed effects regression
model based fractal attributes is used to estimate the age of the patient.

Chapter 6 presents an automated algorithm to assess the maturation of
the preterm autonomic nervous system. A variety of temporal, spectral and
multifractal features are extracted from the heart-rate variability (HRV) data
of the same patient’s cohort reported in the previous chapters. A linear-mixed
effect regression based on HRV features is used to estimate the age of patient
at the moment of the recording. Additionally, the impact of bradycardias on
autonomic maturation is specifically taken into account.

Part III: Stress quantification

Chapter 7 presents a first classification model to discriminate stress or
procedural pain in the preterm infants. This analysis focuses on the relationship
between bradycardia events that a patient undergoes in their NICU stay and
stress in the NICU. A supervised analysis based on EEG and HRV features
during hear-rate drops determines if patients experienced pain the days before
the recording. The dataset consists of 136 patients recorded in three different
times during their NICU stay.
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Chapter 8 presents a second classification model to discriminate stress or
procedural pain in premature infants. This study focuses on a stress detection
from physiological background activity. By means of EEG and HRV features, a
subspace LDA model detects in different sleep states if the patient experienced
pain in the day before the recording.

Chapter 9 investigates the impact of early-life pain or perinatal stress on the
the development of the child in the same patient’s cohort of the two previous
chapters. Based on the features obtained in study reported in Chapter 8
and Chapters 4, 5 and 6, a regression model is designed to investigate if
maturation trajectory of premature infants with high amount of cumulated
painful procedures deviate from the trajectory of patients with a low amount.

Part IV: Developmental disabilities

Chapter 10 presents a quantitative analysis of early-life EEG for the prediction
of autism spectrum disorder and neurodevelopment outcome in patients with
tuberous sclerosis complex. Different linear-discriminant models are reported
to show how EEG features can discriminate normal patients, patients with
autism and patients with other development abnormalities. Regression models
to estimate the development outcome of each patients are also discussed.

Part V: Conclusion

Chapter 11 gives a summary of the main findings reported in this manuscript
and the associated implication for the clinical practice. The last part is dedicated
to a discussion about the future research into both the area of stress and pain
management and developmental delays detection in the NICU.

1.4 Conclusion

This chapter provided the problem statement of this thesis and its three
main goals: automatic monitoring of functional maturation in infants, the
stress detection in premature infants and its impact on patients’ development.
Moreover, the structure and the design of this thesis is presented in a chapter-
by-chapter fashion.
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Chapter 4
Maturation of
EEG connectivity

Chapter 6
EEG multifractality:
Sleep and maturation

Chapter 7
HRV Maturation

Chapter 8
Bradycardia-based
Stress classification

Chapter 9
Unobtrusive
Stress classification

Chapter 10
Maturation
under stress

Chapter 11
Quantitative EEG
analysis of ASD

Chapter 12
Discussion
and future studies

Chapter 1
Chapters Overview

Chapter 2
Physiological
Introduction

Chapter 3
Mathematical
Background

P.V - Conclusion

P.IV - Developmental Disabilities

P.III - Stress
Quantification

P.I - Introduction

P.II - Preterm
Maturation

Figure 1.1: Thesis architecture chapter-by-chapter. The central parts focus
on physiological or functional maturation of the healthy premature infants,
the classification of stress and pain in infants and the relationship between
functional trends and the development outcome of patients.



Chapter 2

Physiological Introduction:
Premature birth, functional
monitoring and perinatal
stress

The present chapter introduces the necessary physiological background to fully
understand the objectives of this thesis. First, an epidemiological overview of
the premature population will be provided in terms of clinical and development
outcomes. Second, an overview of the different physiological monitoring methods
that are commonly used in the NICU is presented. At last, the current state of
the art related to pain and stress and their relationship with infants’ outcome
will be discussed.

2.1 Premature birth and development outcome

Premature infants are neonates born before 37 weeks of gestation and they
account for 10% of the worldwide newborn population [28]. Over the past
decades, the survival rates of premature births have steadily increased, while the
mortality and morbidity rates were on a sharp decline, especially in premature
population below 30 weeks of gestation [32],[131],[150], [164]. This great success
can be attributed to the latest improvements and technological achievements
in delivery rooms and neonatal intensive care units (NICU) [32]. However, the

11
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declined mortality of premature infants was paralleled by an increased incidence
of neurological sequelae and an increased recognition of development disabilities
in children at school-age [32],[150]. Premature infants are at risk of vast range
of acute brain insults, such as intraventricular or periventricular hemorrhage
(IVH/PVH) or periventricular leucomalacia (PVL), which consists in necrosis
of white matter next to the lateral ventricles. Cerebral lesions like PVH and
PVL account for 34.8% of abnormalities in infants at 30 weeks and 7% at
34 weeks, while cardiorespiratory abnormalities, such as respiratory distress
syndrome and bronchopolmunar dysplasia, can impact 54.7% of infants at 30
weeks and 2.6% at 34 weeks [164]. Other perinatal postnatal complications can
be maternal or nosocomial infections, inflammations or poor nutrition [131],
which can also lead to PVH or PVL. Those events can occur in proximity of birth
(perinatal) or later during their stay at the NICU (postnatal), and they might
trigger severe neurodevelopmental deficits and cognitive dysfunctions, such as
cerebral palsy, visual and hearing deficiencies, epilepsy or lower motor outcome
[164],[262], among others. As shown by Marret et al. [164], the intensity of
those impairments is directly proportional to the gestational age of the patients.

However, infants at 34 weeks, without any complications, can still have a lower
cognitive development compared to their full-term peers at 2 age [164]. Although
long-term developmental deficits remain a primary concern, with 5% to 10% of
very preterm children having cerebral palsy (CP) and 40% with milder motor
deficits, the incidence of cognitive deficits is still higher, with 30% to 60% of
premature infants experiencing cognitive impairment and social or emotional
difficulties [238]. Namely, prematurity can lead to subtle abnormalities such
as attention disorders like ADHD [32]. The perinatal course might shed light
on this higher risk of cognitive impairment: premature infants are not simply
prone to postnatal complications and chronic lung disease, but they are also
subjected to maternal separation and experience painful procedures [56],[238].
Multiple authors have discussed and investigated the reasons of those lower
neurodevelopmental outcome. Severe complications, like IVH, PVH or PVL,
can be responsible of different degrees of cerebral and white matter injuries
[150],[164], while the respiratory distress syndrome (RDS) is the leading cause
of preterm mortality [179] . It is interesting to notice that brain infarction or
brain lesions can come as sequelae of multilevel and multisystem immaturities,
such as immune system immaturities (in case of infections), cardiorespiratory
immaturities (in case of RDS) or other congenital factors [4],[179]. In case of
more subtle factors that can lead to cognitive dysfunction, premature birth can
precipitate immature cell death in the brain. This higher rate of cell death can
lead to volumetric losses in sensory-motor cortex and other subcortical areas,
such as the hippocampus, which are ultimately responsible for cognitive and
behavioral disorders [32]. Therefore, prematurity remains a primary concern
for healthcare authorities. The focus is not only related to greatest health
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cost that premature birth will impose in the coming decades, but there is need
to prognosticate, prevent and address the social and educational costs from a
population with a lower neurodevelopmental outcome in our societies.

The gold standard for the detection of cerebral lesions, PVH and PVL, and
other acute brain abnormalities remain structural imaging tools, such as MRI
and cranial ultrasound [184],[262]. The latter is considered a more accessible
methodology, but it has poorer sensitivity in diffuse or subtle brain lesion [262].
The MRI is the finest method to obtain high-resolution images without any
ionization. Magnetic Resonance images allow a precise estimation of a cerebral
lesion location and extension. In addition, MRI can be used to detect white
matter density and directionality thanks to the diffusion tensor imaging [169].
However, MRI is an expensive method, which is not always accessible, and
it is very sensitive to movement artifacts [161]. MRI also requires patients’
transportation and sedation and is specifically designed for structural imaging
[169].

Chronic brain abnormalities are subtle changes in brain functioning and they
might reveal structural lesions or differences only later in life [262]. As Mento
et al. highlighted in a recent review, the structural imaging reveals "how the
brain is", but the functional monitoring is required to tell "how the brain
works" [169]. It should not also be excluded that functional monitoring methods
can be used to monitor brain insults thanks for the availability and prognosis
velocity [184],[262]. Therefore, there are several clinical studies that look into the
functional techniques to monitor brain’s and patient’s homeostasis to detect both
acute abnormalities or chronic stages that can lead to a lower neurodevelopment
outcome [131],[150],[232],[184]. It is important to remember that studies that
focus on developmental delays or cognitive and motor outcomes rely on different
definitions of age. The assessment of maturation in the womb and the effects of
prenatal factors are based on gestational age, which simply represents the weeks
of gestation. In contrast, development inside the NICU is investigated based on
the number of postnatal days after birth, which is the chronological age. A more
common metric to investigate the development after birth is the combination of
gestational age and chronological age, known as the postmenstrual age. If the
focus is the comparison between developmental outcomes between preterm and
full-term infants (born after 37 weeks), researchers rely on the corrected age,
which is the number of days or weeks between the expected delivery day and
the observation point. This metric allows to compare at expected similar level
of maturation. A simple overview of the different age definition is reported in
Figure 2.1.

The next paragraphs will introduce two of the most common functional
monitoring tools in the neonatal intensive care unit. The first is the EEG,
which monitors the electrical activity of the cortex. A longstanding clinical
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Date of assessment
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Conception Birth Expected date

First day of the

Gestational age (GA) Chronological age

Postmenstrual age (PMA)

of delivery
Corrected age (CA)

last menstrual period
0

Figure 2.1: The figure show the multiple definition of age that are used in
neonatology. The gestational age is the amount of time that the fetus stays in
the womb before the delivery and the counting starts from the last menstrual
period of the mother. The chronological age is the number of days after birth
to the observation point, while the postmenstrual age is the sum of the former
two. At last, the corrected age is computed as the number of days between the
expected day of delivery and the observation point.

literature showed how the EEG can be used to assess both the impact of a
variety of brain insults and the level of brain maturation. The second is the
HRV, which monitors the influence of the autonomic nervous system on the
heart. It is normally considered a probe of the status and development of the
neurovegetative functions and it found specific application in detecting sepsis
or acidosis. The objective of the next part of the chapter is to show how EEG
and HRV can be used to monitor the development of the premature infants
in the NICU in the clinical practice and their relationship with developmental
outcome.
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2.2 EEG: functional monitoring of the brain

The EEG provides a direct insight of the brain functioning. It consists of
the recording of electrical activity along the scalp produced by the firing of
neurons within the brain, reflecting correlated activity caused by the post-
synaptic potentials of cortical neurons. It is currently used as diagnostic tool for
different type of abnormalities, such as seizure or brain insults. Especially in the
NICU, EEG can provide critical real-time information of cerebral dysfunction,
especially in case of lesions or systemic diseases [196]. In addition, EEG can
provide information of subjects’ maturation. EEG does not only change with
the development of the infant, but it has also been suggested that those changes
relate to the anatomical development of the brain [33], [169].

2.2.1 EEG recordings: Conventional EEG and aEEG

The conventional set-up for EEG measurement includes Ag/AgCl electrodes,
whose positioning typically follows the 10-20 international system. The 10-20
refers to distance between neighboring electrodes which equals 10% or 20% of
the total distance from the nasion to the inion, which are respectively the suture
that joins the nasal bone with the frontal bones and the occipital protuberance
at the back of the skull. This system guarantees a uniform and consistent
monitoring of different brain regions according to the different international
standard. Each electrode is then labelled by its anatomical position (F for
frontal, T for temporal, C for central, P for parietal and O for occipital) and a
number, which indicates the left hemisphere if it is odd and the right hemisphere
if it is even (Figure 2.2). Each biopotential information is a difference in voltage
between two electrodes. In the case of EEG, the computational scheme to define
those differences is defined as montage and it can be bipolar or monopolar. The
former represents a proximity electrodes difference (e.g. Fp1 - T3), while the
latter considered common ground, which is either an electrode on the aurical
point (A1) or an electrode at vertex of the scalp (Cz). The letter z is used to
represent the middle-line of the cortex. In this thesis, all studies were performed
with monopolar montage referred to Cz. Newborns have typically a reduced set
of electrodes or EEG channels, namely Fp1,Fp2, C3,C4,T3, T4, O1,O2 and Cz
(as also highlighted in Figure 2.2). This is dictated by the necessity to reduce
skin injuries and avoid the discomfort for the patient, as well as by the limited
area due to the small head size.

Due to the complex spatiotemporal information contained, the full-channel
EEG is difficult to interpret with clinical eye. Medical doctors normally use the
amplitude-integrated EEG or cerebral functional monitoring in clinical practice.
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This methodology was introduced at the end of the 60s to quickly scan the
brain function of the adults [165]. It is normally recorded in the NICU with
two electrodes (usually C3,C4) and the signal is normally filtered in [2 − 15]
Hz band, compressed and semi-logarithmically transformed. As pointed by
Pavlidis et al., the aEEG requires for very little training and it can be used not
just for brain insult detection, but also sleep stage-monitoring and extraction
of fairly simple functional features for the developing brain [196]. However, a
full appreciation of the maturational trends requires the analysis of full-channel
EEG, as explained in the next paragraphs.

Figure 2.2: The figure reports the electrodes displacement on the human scalp
according to the 10-20 international system. The grey circles and arrow show
the electrodes that were used in the analyzed EEG recording of this thesis.
Reprinted from [163].

2.2.2 EEG Maturational Patterns

The EEG evolves from the most immature infants at gestational age 23/24 weeks
until full-term age with four major characteristics: (i) a decreasing discontinuity,
(ii) the appearance of sleep-wake cyclicity, (iii) change in hemisphere synchrony
and (iv) the appearance of transient waveforms [197]. The two latter trends can
be detected only with conventional EEG, while the first two are easily assessed
with aEEG. Those four trends are described in short in order to provide a
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formal definition of dysmature EEG, i.e. an EEG which is not appropriate
given the GA/PMA of the infant. A summary of those trends are reported in
Figure 2.3 (adapted from [261],[8],[197]).

Discontinuity

The neonatal EEG baseline is characterized by period of activities, known as
bursts or spontaneous transient activities (SATs), and period of quiescence,
known as interburst intervals (IBIs), as shown by the example in Figure 2.4.
There are different physiological reasons why the brain generates endogenous
events in the EEG. The intermittent activity might be a prior form of sensory
modulation or the GABAergic transmission might not be inhibitory in the early
development [197]. The amplitude of the burst activity can be greater than
300 µV in 25 weeks and it can reduce up to 50 µV at full-term age (36-37
weeks). The burst is centered in low-delta band, which results in a slow-wave
type of pattern. The peak frequency (which defines the main periodicity of the
burst-pattern) is located in the band [0.3 − 1] Hz at 25 weeks and it moves
towards the upper-delta band [2− 4] Hz after full term age, as shown by the
evolution of the dominant frequency in Figure 2.3. On average, the discontinuity
is concentrated in the band [0.5− 2] Hz [8],[261]. The last normative value that
clinicians look at to assess the discontinuity of EEG is the length of the IBIs,
which goes from 60 seconds in extreme-early prematurity up to 10 seconds in
the EEG of infants close to full-term age.

Sleep-wake cyclicity

Sleep-wake cyclicity stands for the organization in behavioral states of sleep.
In neonates, experts distinguish wakefulness, active sleep (comparable to REM
sleep) and quiet sleep (comparable to non-REM sleep) [8]. Behavioral states
can be clinically detected in the EEG as early as 30 weeks GA. However, the
states of younger infants can be detected if polysomnography is available, where
the combination of EMG, EOG, vital signs and video can help doctors in the
sleep assessment. Normally, the quiet sleep shows periods of discontinuous EEG
tracing with absence of eye-movements or muscular activity, while active sleep
is characterized by a more continuous tracing with more rapid muscular or eye
activity [8],[197]. The sleep progression is such that infants start spending 90%
of their time sleeping and this amount decreases to 70% in full-term infants [16].
During the development, the indeterminate sleep, which is a state that cannot be
associated to AS or QS, decreases and the REM sleep becomes more structured
[58], as highlighted by the sleep architecture trends in Figure 2.3. At term-age,
the infants can have up to four states: wakefulness, active sleep 1, active sleep 2
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Figure 2.3: The figure reports the functional maturation trend of the premature
infants in function of postmenstrual age. The charts are adapted from
[261],[8],[197]. The top part reports the evolution of the sleep-wake cyclicity.
The middle part reports the changes in EEG information (such as discontinuity
and amplitude) and type of transients, while the last part shows the evolution
of the different EEG graphoelements. The label AS stands for the active sleep
trend, while QS is the quiet sleep and IS is the indeterminate sleep.
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Figure 2.4: An example of discontinuous EEG, where by period of activities,
known as bursts or spontaneous transient activities (SATs), and period of
quiescence, known as interbursts intervals (IBIs), are respectively shown in blue
and green.

and quiet sleep. The quiet sleep results in a semi-discontinuous tracing, called
trace’ alternant, and the active sleep is a multifrequency continuous tracing [8],
[197].

Synchrony

Synchrony stands for the appearance of the same features in the two hemispheres
simultaneously [197]. Synchrony of high-amplitude burst is present at GA
< 30 weeks as consequence of the development of the corpus callosum and
the predominance of the subcortical control [134]. Asynchrony between two
hemispheres emerges at 30 weeks and it tends to disappear at term age [197].
Although asynchrony can be an important feature to assess the development
of the corpus callosum, the full-channel EEG is required and an appropriate
automatic assessment is necessary [197].

Transient waveforms

Diffused delta activity and delta brushes refer to high amplitude delta
activity, mainly concentrated in the lower delta band [0.3− 1] Hz and mainly
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present at very young GA. They dominate the burst activity in the first period of
life. After 28 weeks, one of the most important traits of neonatal EEG emerges
and is known as delta brush, which is a burst type of activity, centered in the
delta-band [0.5−2] Hz and superimposed with faster activity. They are present
throughout the preterm development, but they peak between 32-34 weeks and
they start disappearing after 38 weeks. While maturation progresses, delta
activity sees a greater interference or superposition of faster frequencies (from
theta to alpha/beta band), a shift from slow band [0− 1] Hz to the upper delta
band [2.5− 3] Hz and decrease in amplitude (from 300 µV to 50 µV ). Most
importantly, the topography of the delta brushes changes with development.
Although the spread of those graph-elements is pretty much diffused at early-
stages, they tend to concentrate in the temporal-occipital region. This might
be a fundamental step of the organization of sensory map on the cortex: delta
brushes appear to be immature evoked potentials for infants younger than 35
weeks GA [236]. The location of those brushes becomes topography-specific
with different type of stimuli: for example, visual stimuli concentrate delta
brushes in the occipital area, while noxious stimuli elicit burst activity in the
temporal area [78],[197],[255].

Temporal and occipital theta activity refer to theta band bursts and include
"Sharp Theta on the occipitals of premature infants" (STOPS) and "Premature
Temporal Theta" (PTT), also known as temporal sawtooth. Both those
transients are centered in the [4− 7] Hz band and their amplitude increases
with decreasing age. STOPS have a sinusoidal pattern, mostly located in the
occipital region, and they disappear at 28 weeks GA, when PTT becomes more
frequent in the temporal regions. Temporal sawtooths will fade around 34 weeks
GA.

Frontal transients include anterior dysrhythmias and encoches frontales. They
both can refer to a smooth transient in the frontal area. The dysrhythmias
manifest as patterns of delta waves of medium amplitude (above 50 µV ) in
AS1 from 36 weeks GA onwards. The encoches start as immature, smooth
and asymmetrical transients from 33 weeks GA and they become a smooth,
symmetric and diphasic patterns from 35 weeks GA. They are generally of high
amplitude (200 µV ) and they are considered as good sign of maturation.

An example of the different EEG graphoelements is given in Figure 2.5.
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Delta BrushesDelta Waves

Temporal Sawtooth

Figure 2.5: Overview of the different graphoelements, which characterizes the
neonatal EEG. The top left shows delta waves, commonly present in the first
days of life and a common sign of dysmaturity, while the top right shows
delta brushes, which are bursts in the delta band with superimposed faster
information and emerge also as a sign of somatosensory cortex modulation. The
bottom left shows theta temporal sawtooths, which are normally present in
the infants below 30 weeks of gestation, while the bottom right shows frontal
transients, which are good sign of maturation of the frontal area.

2.2.3 Abnormal EEG

In short, a healthy preterm EEG should show a decreasing discontinuity, a
decreasing and more asynchronous delta activity and different types of transients
with the infant’s development. Therefore, the monitoring of the EEG background
continuity is an essential indicator to assess if the maturity of the infants is
appropriate for a given GA. In general, various degrees of background depression
and degrees of discontinuity are associated to acute brain insults and they are
generally graded from I to IV. This discontinuity scale starts with prolonged
IBIs and attenuated transients and proceed with different level of delta-burst
attenuation up to low-voltage, or flat-line patterns. The most severe grades
are characterized by solely delta waves or very slow-frequencies. Triggers of



22 PHYSIOLOGICAL INTRODUCTION: PREMATURE BIRTH, FUNCTIONAL MONITORING AND
PERINATAL STRESS

abnormal EEG are brain insults like PVH or PVL, but acidosis, apneas and drugs
can play a role in EEG suppression. Those patterns are acute abnormalities
and they can be easily associated to specific insults. They can also be easily
recognized with aEEG or CFM [197],[262].

However, EEG can show signs of abnormalities without findings of acute
suppression. Those abnormalities are usually defined chronic, and consist
mainly of dysmature and disorganized patterns, which means an inappropriate
pattern for the patient’s GA. In addition, dysmaturity implies the young-preterm
patterns such as high-amplitude delta-waves, theta-bursts or other rhythms
waves and absence of mature, slow patterns can last until term-age and beyond,
generally leading to poor development outcome. In general, the persistence
of discontinuity and slow-waves for a period of time, especially after 36 weeks
GA, is considered a dysmature pattern. The clinical literature distinguishes the
dysmature pattern from the disorganized EEG, which is a deformed activity
compared to normal without any sign of acute insult [262]. Interestingly, the
disorganized EEG might be associated with white-matter injuries, which are
not initially visible with imaging tools, while a dysmature pattern does not
always show association with structural lesion [262]. The dysmature EEG can
lead to mental and cognitive impairment.

The clinical practice of EEG diagnosis reported by Watanabe et al. shows the
power of full and continuous EEG monitoring in the NICU in order to timely
intervene and provide right therapy [262]. High grading of EEG abnormalities
(grade > II) leads to more than 50% of cases to neurological sequelae, especially
cerebral palsy, while chronic dysmature patterns were associated with retardation
or borderline outcome in 68%, defined as a patient without clear sign of insults.
Most importantly, mental retardation and cerebral palsy were respectively
associated to a postnatal event in 71% of cases and to a perinatal event in 51%
of cases.

2.3 HRV: functional monitoring of the autonomic
nervous system

The heart-rate or tachogram represents the beat-to-beat variability of the cardiac
frequency and its analysis is considered one of the most common indicators of
the autonomic nervous system (ANS). The heart-rate represents the frequency
of stimulation of the heart muscle and its autonomous activity is set by the
sino-atrial node, which is a pacemaker group of cells. This activity is normally
monitored with electrocardiogram (ECG). Although the pacemaker stimulation
is autonomous, the ANS can anticipate or delay the heart depolarization, which
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can ultimately change the distance among R-peaks. Specifically, the ANS can
increase the heart-rate via the sympathetic innervation and decrease it via
the parasympathetic innervation or vagus. The variations of the heart-rate
are usually associated to those sympathetic and parasympathetic interplay.
The short-term (or high-frequency, HF) variations are associated to the latter,
while the long-term variations (or low-frequency, LF) are usually associated
to the sympathetic stimulation. The HF is normally related to respiratory
activity and carries information to the respiratory sinus arrhythmia, while the
LF is normally split into a slower component (or very-low frequency, VLF) and
faster component (usually regarded as LF or middle-frequency MF by certain
authors). The latter is normally linked to the short-term control of blood
pressure, or baroreflex sensitivity, while the VLF is considered of less-clear
origin. A schematic representation how to derive the HRV from the ECG is
reported in Figure 2.6.

Premature infants present an immature cardiovascular control and ANS. The
first peculiarity is that the intracardiac regulation (based on Starling’s law)
shows a dominance of the frequency control, which means the cardiac output
is more dependent of the heart-rate. The second peculiarity is the immature
nervous control of the heart-rate which manifests with an extreme low vagal
tone at rest, which is reflected by a very high heart-rate. The immaturity
manifests also itself as a weaker blood-pressure control and chemoregulation.
The baroreflex sensitivity is reduced in infants and the heart-rate reactions to
hypercapnia are delayed or inhibited. However, the most common hallmark of
preterm HRV reactivity to asphyxias are bradycardias, which are heart-rate
drops anticipated by a period of a fast heart-rate with low-variability (known
as tachycardias). Different studies of HRV data processing in both preterm
infants and fetuses confirm that the weak parasympathetic tone is accompanied
by a predominant LF tone [50],[58],[59],[123]. However, the infants’s HRV is
characterized by a strong-wave baseline, therefore the definition of the frequency
band limits is essential. The preterm tachogram might have two dominant
tones, LF and VLF, which might relate to different aspects of the sympathetic
stimulation. This strong dominance of the long-term variations reduces the
complexity or entropy of the HRV signal [231].

Similarly to the EEG, the heart-rate evolves while the brain and the autonomic
nervous system mature. The most relevant changes in these features are the
decrease of the cardiac frequency with infants’ development and the increase of
the heart-rate variability. Specifically, the vagal-tone increases with increasing
GA, but the development of the LF and VLF is faster than the vagal increase
[50],[58]. The increase of variability of the heart-rate seems to involve equally
all the frequency bands. However, the development of the different tones is
sleep-state dependent [58]: the vagal activity increases faster than any other tone
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SA Node

Figure 2.6: The figure shows the nervous control of the heart rate via the
vagal and sympathetic innervation of the autonomic nervous system. Besides
the conduction velocity, their activity acts as controller of the sino-atrial node
anticipating or delaying the depolarization of the heart. The net effect is a
variation of distance between the R-peaks (ventricle repolarization) or beat-to-
beat change of R-peak location. The variations of R-peak-to-R-peak intervals
and its inverse (known as instantaneous hear-rate) are known as heart-rate
variability or tachogram. Reprinted from [186].
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in the quiet sleep, while the rate of increase is higher for long-term variations
in active-sleep. The ANS development also shows a decrease of frequency
and severity of bradycardias, mainly driven by the reducing apnea load. The
development of the cardiorespiratory control does not only show a decrease of
hypoxic events, but it shows a first decrease of the respiratory frequency until
term-age and then a further increase [58]. A schematic overview of the ANS
development is reported together with EEG features in Figure 2.7.

The tachogram information has also been used to assess the acute insults to the
brain. A low HRV has been predictive of respiratory distress syndrome, asphyxia,
acidosis, sepsis and PVH [71],[138]. In the latter case, PVH can drastically
reduce HRV, while infections and septic conditions can be predicted by low
information entropy in the neonate HRV. More interestingly, the variability of
the heart-rate seems predictive of the mental and cognitive outcome. Fetuses
with slower and more variable heart rates tend to have significantly higher
Mental and Psychomotor Development Indices (MDI, PDI) and had better
speech development than those with faster HR and reduced HRV [123]. Similar
results and associations were found between vagal tone and neonatal attentional
orientation have been shown by [84], between HRV and MDI scores at the age
of 1 year by [219], and between respiratory sinus arrhythmia and standardized
cognitive test scores in middle childhood [76]. What is also pivotal of the
heart-rate is that its variability seems primarily explained by maternal care and
genetic factors. Therefore, any event that can affect the relationship between
mother and child can have long-lasting impact on the autonomic control and
the cognitive outcome of the infants [123].

2.4 A definition of dysmature EEG and HRV

The medical research community delved into the maturation of a variety
of different traits of neonatal EEG and HRV and related them to possible
developmental and clinical outcome. In order to provide a unique and
reproducible framework, the biomedical literature tried to provide a definition
of dysmature EEG and HRV. Considering a specific patient under monitoring,
dysmaturity means an electrophysiological recording whose traits and aspects
resemble the physiological data of a much younger patient. It could generally
imply a possible adverse outcome. Therefore, two general definitions of
dysmature EEG and HRV are provided and the concept of dysmaturity should
be intended as the functional dysmaturity discussed below.
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Figure 2.7: Functional trends of the respiratory and cardiovascular system.
The charts are adapted by [58]. The upper part shows the evolution of the
respiratory information, with a sharp decrease in apnea-frequency with aging
and a u-shaped change of the respiratory rate. The lower part shows the
cardiovascular trends, which are a decrease in heart-rate and increases of the
low-frequency and high-frequency power. The label AS stands for the active
sleep, while QS is quiet sleep.
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2.4.1 The dysmature EEG

Pavlidis et al. [196] and Watanabe et al. [263] defined the main traits of a
disorganized EEG in case of dismaturity or preterm infants with a poor clinical
outcome as follows:

1. Discontinuity, intended as a background depression or prolonged inter-
burst interval, which can reach a total absence of continuous pattern
[150]

2. Persistence of slow-waves, intended as signal with mainly delta activity or
increased presence of transients such as delta-brush

3. Asynchrony, intended as delayed occurrence or lagged asynchrony among
bursts

In a normal maturation profile, all those features are expected to disappear,
while their persistence might be symptom of an underlying abnormality.
The engineering literature showed different methods to quantify the level of
discontinuity and persistence of slow-waves. The former is usually assessed via
the detections of spontanoeus transient activities (SATs). The distance between
them is usually known as interburst intervals (IBIs) and different metrics were
derived based on those two patterns, such as percentage of time spent with
SATs, maximal and mean length of the IBIs or IBIs distribution, as shown by
[194], [133], [191] and many others. In case of the persistence of the slow-waves,
simple methodologies, such as the amplitude distribution of the EEG or the
spectral power in the delta band [223],[130], were investigated to assess the
presence of slow-wave transients in the EEG.

2.4.2 The dysmature HRV

Unlike the dysmature EEG, there is no clear-cut definition for dysmature heart-
rate variability. However, multiple authors have investigated the differences
between term and preterm population in terms of HRV and some similarities
have been found between fetuses and preterm infants. Javorka et al. showed
that the greatest consensus in the literature concerns the increase of variability
of the heart-rate with maturation, together with a sharp decrease of the cardiac
frequency [58],[123] . In addition, the bradycardias and apnea frequency should
decrease [58]. Probably, the closest research to a definition of a dysmature HRV
was the study by Hoyer et al. [111]. They found the neurovegetative maturation
in fetuses will decrease the slow-wave or very-low frequency information in
infants relatively to other frequency bands, while complexity of the signal
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increases. Similarly, David et al. showed that fetal HRV has strong slow-wave
baseline, while Clairambault et al. showed that the power of all frequency
bands, especially the faster ones (low-frequency and high-frequency band), will
increase over age [59], [50]. Therefore, a dysmature HRV has extreme slow-wave
baseline, low variability and high regularity.

2.5 Pain, Stress and developmental outcome

Although many perinatal factors have been linked to an adverse neurodevel-
opmental outcome, much of the variations in premature infants’ outcome has
yet to be explained. During premature development, the brain might undergo
subtle changes that can lead to attention disorders like ADHD. Besides the
sequelae of postnatal complications, the incidence of cognitive, social and
emotional impairment remains higher in the premature population. Multiple
studies suggest that exposure to stressors in the NICU might impact the
neurodevelopment outcome of premature infants [101],[238],[100],[258]. This
exposure, known as Perinatal stress, is usually comprised of two factors: painful
procedure and maternal separation. Pain-related stress has been associated to a
lower cognitive and motor function at 8 and 18 months and higher internalizing
behavior (linked to the depression) at 8 and 18 months [101].

Multiple theories are reported in the clinical literature about why and how stress
and early procedural pain can impact the infant’s development. Premature
infants develop a central sensitization to pain and a lower pain threshold,
as a consequence of peripheral sensitization [85]. This has been seen by the
hyperinnervation of the periphery and the increase of receptive fields of the dorsal
horns [218],[248]. At the central level, the subplate neurons are the first cells to
be generated in the mammalian cortex and the first one to receive sensory inputs.
Repeated procedural pain might lead to excitotoxicity and apoptosis of those
neurons, while the premature cortex showed a larger neural activity compared to
the term brain in response to noxious procedure [42], [236]. This overstimulation
might reduce brain volume, white and gray matter connectivity, decrease cortical
thickness and reduce the thalamic volume [32],[42],[73],[214]. Topology wise,
stressors seem to target the volume of the frontal and parietal areas, as well
as the functional and microstructure of temporal lobes [42],[238]. Interestingly,
the altered temporal architecture might be a reflection of the reduced volume
of the hippocampus, which has been observed in rat models as consequence
of chronic stress and post-traumatic stress disorders. In addition, procedural
pain might activate immune system modulators, which release inflammatory
molecules, which already makes the glia cells vulnerable to immune signaling
molecules, such as cytokines, and sensitize further the periphery to pain [73],[258].
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However, perinatal stress does not only include pain-related information, but
maternal separation might also play a role. Animal models using rats show that
maternal separation might diminish frontal EEG activity [175], and parenting
seems a protective factor to mitigate the stress impact on development and the
insurgence of internalizing behavior [101].

The clinical literature clearly shows that stress can impact brain development,
but it is important to remember that procedural pain or pain-related stress
can depend on gestational age, first days of life, birth weight, respiratory
support, infections and drug administration [101],[100],[238]. Although there
are already multiple pain scales to assess behavioral and physiological states
of the premature infants, the clinicians are faced with the difficult task of
discriminating and appropriately managing pain in infants born prematurely.
As Smith et al. pointed out, stress seems to be a pathway from severe illness to
altered brain development rather than a marker of severe illness [238].

However, clinicians cannot yet fully disentangle pain, several illnesses and the
effect on development. Unmanaged pain may have substantive effects on the
developing brain and the stress-response system of premature neonates. In
the current NICU scenario, the detection and assessment of the developmental
effects of stress via structural imaging might be burdensome for the patients.
Measures like MRI require further transportation and sedation [169] and, most
importantly, they risk to be unhelpful. Alternatively, chronic brain abnormalities
might be invisible to imaging and still lead to sequelae like mental retardation,
as highlighted by [262]. The latter is especially associated to dysmature EEG
patterns, which can be associated to mild or absent brain lesions. On top of that,
premature infants show cortical reactivity under noxious stimuli. Continuous
exposure to stress and procedural pain might induce pain sensitization and lower
the pain threshold, which might be the biological link to affect the functional
activity of the infant. Responses to the heel lance show dispersed neuronal
bursts on the scalp up to 35 weeks gestational age, while full-evoked potentials
are recorded from 36 weeks onwards [78],[236]. The immature burst that is
recorded is a slow-wave transient with superimposed faster rhythms, which is
defined as delta brush. Therefore, one might expect that the effect of procedural
pain can be monitored with functional monitoring, especially EEG activity,
which seems to be characterized by increased burst activity in case of pain.
Interestingly, the emergence of delta brushes on the somatosensory cortex are
also sign of the development of sensory modulation and they are expected to
disappear after 35 weeks GA [197]. This EEG reactivity, especially to noxious
stimuli, is the fundamental link among pain, background stress and HRV [125].

In general, the possibility to track infant’s maturation in the NICU might be
helpful to monitor the impact of a variety of perinatal and postnatal factors at
cot-side. Although clinicians recognize the importance of electrophysiology, the



30 PHYSIOLOGICAL INTRODUCTION: PREMATURE BIRTH, FUNCTIONAL MONITORING AND
PERINATAL STRESS

complexity of EEG channels and heart-rate variability dynamics might require
a level of training, which is not always available. The capacity to automatically
track maturation, detect pain, stress or any other abnormal condition, and
assess their impact on the developmental trajectory might help to further
tune preventive treatment or specific therapies to preserve the developmental
outcome. If most of the subtle factors that can affect the development of infants
are invisible to the clinical eye or imaging methods, physicians might require
new methodologies to detect stress and pain levels from the abnormalities
of physiological data. Clinician want to understand if early-life physiological
activity can be compromised by stress, cumulated pain or other perinatal factors.
Automatic tools based on digital signal processing might then be helpful to
detect those abnormalities and predict the impact on the future development of
the infants.

2.6 Summary

Although the survival rates of premature infants have steadily increased in
the recent decades, the risk of lower cognitive outcomes compared to their
age-matched peers is higher. Functional monitoring, such as the EEG and
HRV, can assess the level of dysmaturity or development delay and they
can be related to the developmental outcome of the patients. EEG shows
a decrease of discontinuity and amplitude with infants’ maturation, while HRV
is characterized by an increase of heart-rate and the power of the main frequency
bands. Both the EEG and HRV have been investigated under pain stimuli and
perinatal factors such as pain and stress have been proven detrimental for the
infant’s development. However, automatic tools to detect and monitor stress
based on physiological signals are required.



Chapter 3

Mathematical background

This chapter provides a mathematical overview of the different methods to
process EEG and heart-rate variability. First, a description of the univariate
or one-channel based methodologies to assess dysmaturity will be presented.
Second, the connectivity methodologies among the different modalities will be
listed. In addition, graph theory will be explained for the topological assessment
of functional networks. Third, an overview of regression models and supervised
learning methods will be provided.

3.1 Univariate Analysis

The previous chapter clearly defined the following traits of dysmature EEG:
discontinuity, persistence of slow-waves and asynchrony. In parallel, a dysmature
HRV was also described as a signal with slow-wave oscillations and higher
regularity. The current section provides an overview of the features that can be
extracted from one signal to assess discontinuity and persistence of slow-waves.
Those features span a variety of properties of the EEG and HRV signals, from
linear and spectral attributes to nonlinear and fractal parameters. This section
starts with classical spectral approaches to continue with a description of entropy
features and the multifractal framework. Examples using simulated data are
also reported to show how and why this univariate analysis should be tailored
to the neonatal EEG and HRV.

31
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3.1.1 Spectral analysis

To assess the contribution of the slow-waves in the EEG or the sympathovagal
balance in the HRV, the most common approach is to use the power spectral
density and perform an analysis in different frequency bands. In case of EEG,
the power is normally computed in the following frequency bands: δ1 = (0.5−2]
Hz, δ2 = (2− 4] Hz, θ = (4− 8] Hz, α = (8− 16] Hz and β = (16− 20] Hz.
The division of the δ band between δ1 and δ2 is a common procedure in preterm
infants due to the maturational changes in the slow-waves bands of the EEG
[181], [261]. The HRV power is normally assessed in the following frequency
bands: high-frequency HF = (0.2 − 4] Hz, low-frequency LF = (0.08 − 0.2]
Hz and very-low frequency band V LF = (0.0033 − 0.08] Hz [59]. In case
of HRV, the relative power indices V LF

LF , LFHF ,
LF

LF+V LF ,
LF

HF+LF are commonly
derived to express the interplay between the sympathetic and parasympathetic
stimulation.

In general, both the EEG and the tachogram are not stationary time-series,
which could require time-frequency (TF) analysis to describe the oscillation
shifts in the signals. Therefore, the power spectral density (PSD) is usually
estimated using Welch’s periodogram in non-overlapping windows as well as with
time-frequency approaches, such as the quadratic smoothed pseudo Wigner-Ville
distribution (SPWD) [187] and the continuous wavelet transform [59]. Given
a fixed window size, Welch’s algorithm estimates multiple periodograms in
overlapping subwindows and averages them. In contrast, the time-frequency
approaches estimate the instantaneous autospectrum Sxx of the signal x(t). In
case of SPWD, Sxx is estimated as follows:

Sxx(t, f) =
∫ ∫ +∞

−∞
Φxx(τ, ν)Axx(τ, ν)ej2π(tν−τf)dτdν, (3.1)

where Axx(τ, ν) is the ambiguity function, which is defined as the Fourier
Transform of the time-dependent auto-correlation of x(t) as follows

Axx(τ, ν) =
∫ +∞

−∞
x(t+ τ/2)x∗(t− τ/2)e−j2πtνdt, (3.2)

where τ represents the lag-domain of the auto-correlation function, ν is the
Doppler shift in the frequency domain and ∗ is the complex conjugate operator.
The smoothing of the time-frequency cross-coupling in Eq. 3.1 is done via the
exponential kernel in the ambiguity domain defined as:



UNIVARIATE ANALYSIS 33

Φxx(τ, ν) = exp
{
− π

[(
ν

ν0

)2
+
(
τ

τ0

)2]2λ}
, (3.3)

where ν0, τ0, λ are kernel function parameters and they are set such that a
desired TF resolution of [∆t, ∆f ] is reached [268]. Therefore, τ and ν can
be simply intended as degree of time and frequency filtering [187]. Similarly,
Sxx(t, f) can be computed as the scalogram of the continuous wavelet transform
of the signal as follows:

Wxx(t, s) =
∫ +∞

−∞
x(τ)ψ∗

(
t− τ
s

)
dτ, (3.4)

Sxx(t, f) = |Wxx(t, f)|2, (3.5)

where ψ is the mother wavelet (normally, Analytic Morlet), while s stands for
the scale of the wavelet transform and, in the general, s ≈ f−1. The lag τ
represents the shift in the time domain of the wavelet base ψ.

Based on the given methodologies, the instantaneous power in the band of
interest β = [f1, f2] can be obtained as

Pβ(t) =
∫ f2

f1
Sxx(t, f)df. (3.6)

3.1.2 Entropy Measures

The persistence of slow-waves as well as the discontinuity and the predictability of
a signal can be measured using entropy, which assesses the degree of irregularity
in a signal. Lake and Moorman proposed the sample entropy (SampEn) as
statistical estimator of entropy [138]. Generally, this estimator can be conceived
as the conditional probability that two short templates or patterns will continue
to match inside the signal when their size is increased within a certain tolerance.

Given a data record x1, x2, ...xN , let xm(i) denote a m-long template like
xi, xi+1, ..., xi+m−1, with m < N and a starting point i. A match is defined if
and only if xm(i) is within a certain tolerance r of any other template xm(j),
i.e. |xm(i)−xm(j)| < r. The tolerance r is defined as a fraction of the standard
deviation of the signal (normally, 20%), while a common choice for m is 2
or 3. Let Bi denote the matches of dimension m with template xm(i) and
let Ai denote the matches of dimension m + 1 with template xm+1(i). The
cumulative numbers of matches for a certain tolerance r are respectively defined
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as Am+1(r) =
∑
Ai and Bm(r) =

∑
Bi. The SampEn is defined as the

negative natural logarithm of the ratio between Am+1(r) and Bm(r) as follows:

SampEn(m, r) = − log A
m+1(r)
Bm(r) (3.7)

Figure 3.1 shows how to compute the sample entropy on the right panel. The
matches between a certain sample and other future sample is reported by the
same color-coding (blue for top-part of the signal, red in the center and green
for the lower margin) if inside the r tolerance tunnel. In order to increase the
counting of Am+1 and Bm, the same pattern should repeat over time, which is
indicated by the blue lines in the Figure: the combination of red, green and
blue sample repeats over time and, therefore, increases the counting of matches.

The SampEn (and its variations, such as quadratic sample entropy or coefficient
of sample entropy) was successfully used in a variety of applications with EEG
and HRV. They span from atrial fibrillation detection, through the prediction
of sepsis in premature infants to the impact assessment of Kangaroo Care on
sleep quality and EEG maturation [138], [139], [128],[271].

However, the entropy information might differ across the different scales or
time-frame of the signal. Especially, in neonatal HRV and EEG there is a clear
distinction between slow-wave baseline and the information in faster rhythms
[59],[198]. The complexity of those signals requires not only to understand
how the information changes for different scales, but how the acceleration or
deceleration of different rhythms might interact among each other [110]. Hoyer
et al. found that fetal heart-rate is characterized by a decrease of short-term
decelerations and increase of long-term accelerations with development [110].
Similarly, the neonatal EEG presents delta brushes with superimposed faster
frequencies than the original theta rhythms, while the infant grows [198],[190].

Therefore, in order to take into account the irregularities at multiple scales,
Costa el al. [55] proposed the multiscale sample entropy (MSE), which measures
SampEn at different scales τ using a coarse-grained version of the signal of
interest. Let yτ denote the coarse grained version of the signal x(t), which is
computed as:

yτj = 1
τ

jτ∑
i=(j−1)τ+1

xi, 1 ≤ j ≤
N

τ
(3.8)

For τ = 1, yτ = x(t), while yτ represents a signal average in the window frame
of length τ or a moving average of order τ when τ ≥ 1 [112]. After averaging, a
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Figure 3.1: The two steps to compute the Multiscale Entropy. The left panel
shows the coarse-graining procedure, which is an averaging and downsampling
at each scale (as shown by the blue and green dots). The right panel shows
the computation of the SampEn, which is repeated at each scale. The pattern
match is indicated by the blue lines and the color-coding of the red,green and
blue samples. The figure is adapted from [65].

downsampling of factor τ follows. The MSE is simply the SampEn function of
the different yτ , as follows

MSE(m, r, τ) = SampEn(m, r, yτ ) (3.9)

where τ normally spans from 1 to 20. The two steps of MSE are reported in
Figure 3.1. The left panel shows the coarse graining procedure starting from
the original signal down to a generic scale n: each level represents an average
of the samples in a window of n samples (as shown by the blue and green dots).
The right panel shows the computation of the SampEn, which is repeated for
each scale.

The complexity of a signal is then computed as the area under the MSE curve,
CI =

∑
τ MSE(τ), which is a general measure of irregularity across scales.

Different authors also investigated MSE at specific scales, such as MSE(τ = 3)
and MSE(τ = 20), since they represent represent the information at small
scales or high frequency and at longer scales or lower frequency, respectively
[110].

The complexity of those rhythms might underlie specific physiological processes
(like autonomic stimulation) or might be of greater development value (the
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contribution of the slow-waves to EEG) [110],[198]. In order to illustrate which
information the complexity index provides, we computed the MSE(τ) for the
following set of signals: white Gaussian noise, pink noise, Brownian motion,
an example of squared modulated noise and an example of EEG (Figure 3.2).
The modulated noise has been generated as product between a white noise and
a periodic signal of Gaussian waves in order to mimic the Burst-InterBursts
pattern of the neonatal EEG (Figure 2.4). Examples of a Brownian motion and
a modulated noise are reported in Figure 3.4. In general, a regular signal should
have low entropy value for all scales, while stochastic signals may have different
behaviors [55]. The white noise and uncorrelated signals have a decreasing
MSE, which means a high entropy at short scales and a lower entropy at higher
scales (golden diamonds curve). On the contrary, a pink-noise or 1/f signal
have a persistent enropy at all scales since it contains a long-range correlations
[55] (pink circles curve). Furthermore, regular signals like a fractal Brownian
motion and modulate noise have far lower entropy than noise signals (green-
squares curve and blue hexagons, respectively). This reduced entropy is due
to regular structure of this signal. In addition, both signals have an increasing
entropy to highlight the predominance of the long-range correlation over the
short-term entropy. Especially, the modulated noise resembles the structure
of the discontinuous neonatal EEG (especially in comparison Figure 2.4) and
the squared version adds nonlinear phase interactions which enhances the long-
range correlations (as discussed by [230] in case of a quadratic phase signal).
The example of neonatal EEG locates in the middle of this set (silver-stars
curve). The entropy will increase over the different scales, but the entropy in the
short-term is general higher than a regular signal such as a Brownian motion.
In the long-term scale, the entropy of pink-noise and EEG are similar to each
other (Figure 3.2), which also implies that the physiological signal reach an
entropy plateau. Eventually, the complexity index and MSE(τ) can describe
the regularity or the "richness" of information, especially for a discontinuous
pattern. Interestingly, the MSE does not only capture the information dynamic
at different scales, but it also describes the infant’s EEG as a process which
mixes stochastic patterns with fractal and nonlinear behavior.

3.1.3 Multifractality

A more discontinuous EEG signal or a more dysmature HRV is normally
characterized by a lower entropy, since its pattern has higher predictability or
memory-persistence. This means that the signal can be easily predicted by
its past sample and, therefore, a more discontinuous signal is characterized by
higher regularity. In particular, Figure 3.2 highlights that neonatal EEG is
more than a stochastic process. Normally, regular signals are characterized by
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Figure 3.2: Example of MSE curves computed for the following sets of signals:
white Gaussian noise (golden diamonds), pink noise (pink circles), Brownian
motion (green squares), an example of squared modulated (blue hexagons)
noise and an example of EEG (silver stars). The white Gaussian noise have a
decreasing entropy, the pink noise have a persistent entropy over all scales and
the two regular signals have increasing entropy over the different scales. The
neonatal EEG rapidly increases for the short-term scales and reach a plateau of
entropy at higher scales similar with a comparable SampEn to the pink noise.

a wide autocorrelation function and a power-law spectrum [71], whose rate of
decay is controlled by the Hurst exponent as follows

Sxx(f) = |C|f−2(H−1) (3.10)

In case that time series is normally characterized by one exponent, this signal is
also defined as self-similar (it repeats itself over time) or monofractal. However,
regular or discontinuous signals might have multiple exponents h to control the
degree of regularity over time [118]. Those signals are known as multifractals. In
general, signals with a high-degree of regularity are known as fractals or scale-free
signals. Small values of h represent sharp and transient regularity or singularity
(known also as the minimal regularity), while large values represent smooth
changes (known also as the maximal regularity) [151] [2]. In case of fractal
signals, it is possible to quantify the embedding or fractal dimensions associated
to each Hurst exponent. This function D(h) is called the singularity spectrum
(SS) and its determination is pivotal to assess the amount of singularities in
the signal. Consequently, the monofractal signal has one embedding dimension,
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c2

c3

Figure 3.3: Example of singularity spectrum obtained with the multifractal
framework (black line). The main multifractal parameters obtained from the
singularity spectrum are the following: the cumulant c1 or H represents the
location of the D(h) maximum, c2 the width of the D(h) distribution and c3 is
its asymmetry, which is intended as deviation from a concave parabola centered
on c1 (grey dashed lines). The extremes Hmax and Hmin respectively represent
the maximal regularity and the minimal regularity. Another measure of the
width of SS obtained as ∆H = Hmax −Hmin.

while a multifractal signal has distribution of dimensions associated to each
value of h.

A possible way to estimate the SS is the multifractal formalism based on the
wavelet leaders. Let ψ0(t) be a mother wavelet with a positive number of
vanishing moments. The discrete wavelet transform (DWT) is defined by the
inner product dj,k =

∫
R x(t)ψj,k(t)dt, which decomposes x(t) into elementary

time-frequency components by means of translation 2jk and dilation or scale
a = 2j of the mother wavelet [266], since {ψj,k(t) = 2−jψ0(2−jt− k), j ∈ R, k ∈
R}. Large scales describe smooth and low frequency oscillations, while small
scales describe the sharp transitions in the signal. Wavelet leaders Lf (j, k) ≡ Lλ
represents the maximum wavelet coefficient in the narrow time neighborhood
3λ over all finer scales. Let λ ≡ λj,k ≡ [k2j , (k + 1)2j) be a dyadic interval,
such that dλ = df (j, k) and let 3λ ≡ λj,k−1 ∪ λj,k ∪ λj,k+1 the union of three
dyadic intervals, the wavelet leader is then defined as:

Lf (j, k) ≡ Lλ = sup
λ′⊂3λ

{|dλ′ |}, (3.11)
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According to [266] and [211], a partition function Z(a, q) = Z(2j , q) can be
estimated using the wavelet leader Lf (j, k), as follows:

Z(a, q) = ZL(2j , q) = 1
nk

nk∑
k=1
|Lf (j, k)|q ∼ 2jτ(q), (3.12)

where τ(q) is known as the scaling exponent and controls the rate of decay of
the partition function. This formulation includes also the special case q = 2,
which represents the scalogram or the power spectral density of the signal. In
general, for certain values of q, the exponent τ(q) has a specific meaning: for
positive q, Z(a, q) reflects large fluctuations in the signal, while Z(a, q) reflects
short fluctuations for negative q. In general, for each q, the partition function
exhibits a power-law decay characteristic, such as the power spectrum of the 1/f
noise in (6.2). The scaling exponent associated to this decay can be obtained
by computing the slope of Z versus the scales in a log-log diagram. The use of
the log-transform clearly shows the advantage of defining the scale as a = 2j .
Formally, the function τ(q) is estimated as follows:

τ(q) = lim
j→0

inf
(
log2(ZL(2j , q))

j

)
, (3.13)

Computation-wise, τ(q) is estimated in the log-log diagram from a certain scale
a1 = 2j1 to a2 = 2j2 , which are normally defined according to the oscillations
that one wants to investigate.

In case of a monofractal signal, τ(q) is a linear function τ(q) = qH − 1, where
H is the global Hurst exponent. In case of a multifractal signal, τ(q) is a
nonlinear function of the local exponents h as expressed by τ(q) = qh−D(h),
where D(h) is the singularity spectrum. Consequently, D(h) can be written
as D(h) = qh− τ(q) where h = dτ(q)

dq . Since τ(q) can be decomposed in terms
of cumulants or coefficient cp using a Taylor expansion, τ(q) =

∑∞
p=1 cp

qp

p! ,
the singularity spectrum can be also reformulated in terms of coefficients cp.
Figure 3.3 shows the meaning of first three cumulants: c1 represents the location
of the maximum, c2 the width of the D(h) distribution and c3 is its asymmetry,
which is intended as deviation from a concave parabola centered on c1 (grey
dashed line in the Figure 3.3). The parameter c1 is normally considered as the
main or global Hurst exponent of the signal and is then referred to as Hexp or
H. In order to assess the smooth and sharp transients in the multifractal signal,
it is standard practice to derive the maximal and minimal Hurst exponent and
the difference between the two ∆H, which is another measure of dispersion of
the fractals inside the signal similar to c2 (Figure 3.3). The parameter Hmax

represents the maximal regularity or smooth transitions, while the parameter
Hmin represents the minimal regularity or sharp transitions.
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Figure 3.4: Examples of two singularity spectra D(h). The top panel shows
a Brownian motion with one single Hurst exponent, while the bottom panel
displays modulated noise obtained by the product between white noise and
periodic Gaussian waves (green curve). The right panel shows the singularity
spectra of the Brownian motion (purple circles) and of the modulated noise
(green diamonds). The latter has a very wide D(h) and higher global H, while
Brownian motion has a narrow SS around its real Hurst exponent.

In practice, both monofractal and multifractal signals can be investigated with
SS. The approach with wavelet leaders always derives a D(h) as indicated in
Figure 3.4, which reports two examples for a Brownian Motion with one single
Hurst exponent and a modulated noise. The former is a monofractal signal by
design, while the latter is the product of white noise with a periodic signals
of Gaussian waves to mimic the neonatal EEG. Brownian motion has a very
narrow SS around its real Hurst exponent, while modulated noise has a very
wide SS and a much higher parameter c1. Based on these simulated data, one
can draw some basic conclusions. First, the spectrum D(h) and its triplet
c1,2,3 seems to detect a multifractal pattern for a discontinuous signal. Second,
since the discontinuity is expected to change with infant’s development, D(h)



MULTIVARIATE ANALYSIS 41

seems uniquely placed to describe changes in EEG or HRV or discriminate
continuous from discontinuous patterns, especially by combining H and the
width parameter c2. Third, the multifractal framework always generates a SS
and the location of its maximum can be used to represent the overall fractality
of the signal.

3.2 Multivariate analysis

The univariate time-series analysis is commonly used to study features of a
single signal of the neurophysiological system under investigation. Nevertheless,
Pereda et al. pointed out that an increasing number of experiments are carried
out with simultaneous recording of several neurophysiological signals [200].
Additionally, Bartsch et al. highlighted the increased number of experiments
where signals of different organs and systems are recorded in last decades [23].
The assessment of the interdependence among signals can give new insights into
the functioning of the systems that generate them. As Pereda et al. described
in [200], the univariate analysis alone cannot accomplish this investigation and
a multivariate analysis is required.

Alongside the decrease in the persistence of slow-waves and of discontinuity,
different studies show how neonatal EEG presents changes in the interactions
among channels, known also as connectivity [197]. In particular, the asynchrony
among bursts or SATs is expected to increase, especially in the lower frequency
bands [251], [216],[261]. In contrast, the high-frequency information is expected
to synchronize, either as bursts with alpha/beta rhythms or ERPs due to
noxious or tactful stimuli [198],[237]. Numerous authors pointed out that
this key feature is normally visually assessed by the temporal coincidence of
SATs [251], [216], [197]. However, a refined analysis of the connectivity among
EEGs requires both a full-montage EEG synchronous recordings and more
sophisticated methodologies to study the coupling. As shown in Section 2.2.1,
the conventional EEG channels are more difficult to interpret and clinicians
rely more on quantitative EEG analysis, especially for synchrony which lack of
an unanimous definition of the clinical community [216].

In order to investigate the interdependence among neurophysiological signals,
we referred to the established framework of Brain Connectivity defined by
Friston et al. [91]. They distinguished three levels of connectivity: structural,
functional and effective connectivity. The structural connectivity refers to the
anatomical architecture of white and grey fibers, which allow the actual transfer
of information among brain regions via physical "wiring". The functional and
the effective connectivity refer to statistical correlations or dependencies among
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cortical activities of different brain regions. The difference between these two
levels lies on the estimation of the directionality. The functional connectivity
only estimates the coupling without specifying the direction of the information
flow, while the effective connectivity is able to determine both the intensity of
the coupling and the direction. The investigation of the functional level of the
brain relied on the use of different methods, which investigate either the time
or the frequency domain as well as the linear or nonlinear couplings.

In recent years, those methodologies and the functional connectivity framework
were also applied beyond the world of neuroscience and neuroimaging. Although
the medical community traditionally focused on each single physiological system,
the human organism is an integrated network, where the different organ
systems interact among each others [23]. The field of Network Physiology
aims to investigate this horizontal integration among organ systems and a
variety of examples were already reported in the scientific literature, such as
the neurovascular coupling (EEG-NIRS), cardiorespiratory interactions and
brain-heart interactions [80],[119],[45],[254],[107]. In the neonatology research,
Pfurtscheller et al. showed that neonatal EEG bursts are synchronized with
increases of heart-rate in the first weeks of life [204]. Interestingly, the same
methodologies that Pereda et al. [200] and Friston et al. [91] illustrated for the
investigation of neurophysiological brain networks, can be applied in the more
extensive framework of Network Physiology, where signals may present different
temporal and spatial properties.

Given the increasing availability and tractability of large datasets of different
physiological systems and their connections, the application of multivariate
analysis in biomedicine led to the rise of network science as a way to characterize
network structure and functions [221]. The macroscopic behavior of brain
networks or physiological networks is characterized by a specific regularity
which emerges by their interacting elements [43]. Therefore, the multivariate
analysis is presented in two steps. The first paragraphs describe how to estimate
interactions among signals and how to assess their statistical validity. The
multivariate analysis section subsequently focuses on graph theory and network
properties to investigate the organizational architecture of those interacting
systems.

3.2.1 Functional Connectivity

According to Friston et al. [91], functional connectivity is an observable
phenomenon that can be quantified by measures of statistical correlation,
without any explicit assumption on the data-generation model. For that purpose,
different methods have been developed to test whether there is any dependency



MULTIVARIATE ANALYSIS 43

among signals [200]. In this chapter, we are going to review some of the most
common multivariate methods to test interaction in the time and frequency
domain as well linear and nonlinear approaches.

Coherence

One of the most common methods to investigate the dependence in the frequency
domain is the coherency or coherence. The definition is:

Cxy(f) = Pxy(f)
(Pxx(f)Pyy(f))1/2 , (3.14)

which measures the strength of the linear relationship between two signals x
and y at a specific frequency f and it is in general a complex number. Pxy(f)
is the cross-spectrum between channels x and y, while Pxx(f) and Pyy(f) are
autospectra of each channel, respectively. Consequently, the coherence is a
normalized cross-spectrum. The most common way to describe the correlation
of two signals in the frequency domain is the squared magnitude of the coherence

k2
xy(f) = |Cxy(f)|2, (3.15)

which is also known as the magnitude squared coherence (MSC). However, Nolte
[182] pointed out that the true interactions can be measured via the imaginary
part of the coherence (ImCoh)

ImCohxy(f) = I(Cxy(f)), (3.16)

which assesses only the lagged interactions. This distinction between lagged
and instantaneous interaction is pivotal because the link among signals is not
necessarily unique, especially in case of scalp EEG networks. Although an
increasing number of channels might increase the spatial resolution in the
functional description of the brain, the interactions among channels might be
explained by the same underlying source which is projected on two different
channels. However, couplings like ImCoh emerge only if there is a phase shift
among the time series. In this way, the lagged interaction should be robust to
spurious connectivity, which can arise from any linear mixing of independent
sources due to volume conduction [104]. According to Nolte [182], if a linear
superposition of K sources sk(f) is assumed for any channel x
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X(f) =
K∑
k=1

axksk(f), (3.17)

the only distorted part of cross-spectrum Pxy(f) will be the real part, as shown
below:

Pxy(f) =< X(f), Y ∗(f) >=
K∑
k=1

axkayk′ < sk(f), s∗
k′

(f) >= (3.18)

=
K∑
k=1

axkayk < sk(f), s∗k(f) >=
K∑
k=1

axkayk|sk(f)|2, (3.19)

where < X(f), Y ∗(f) > is the dot product between two signals. Consequently,
this instantaneous mixing is only reflected in the real part of coherency and
might only affect the MSC. For these reasons, if independent sources are
mixed at the sensors’ level, the imaginary coherency will vanish to zero since it
measures only the time-shifted couplings.

A possible interpretation of Cxy(f) is normally a correlation or cosine-similarity
in the frequency domain between signal x and y. Given two sine signals of
amplitudes Ax and Ay and frequencies fx and fy respectively, the complex
coherence in (3.14) can be re-written as:

Cxy(f) = AxAye
j(φx−φy)√

|Ax|2
√
|Ay|2

=
zxz
∗
y√

|zx|2
√
|zy|2

(3.20)

where Axejφx = X(f = fx) and Aye
jφy = Y (f = fy), which represent the

Fourier transform of the sine at their specific frequencies. Therefore, φy and
φx will be the phase of the signal at frequencies fx and fy. The right part of
(3.20) of the inner product between the complex numbers zx, zy highlights the
interpretation as correlation or similarity of two signals at each frequency f . If
we consider fx = fy and zero delay between two sines, the Cxy(f) will be a real
number on the complex plane and it will be bounded between 0 and 1 based
on the amplitudes of the sinusoid signals, as highlighted by the red bar in the
top panel of Figure 3.5. The value 1 is reached when Ax = Ay. Consequently,
instantaneous interaction among periodic signals will be reflected by the real
part Cxy(f) and in general by k2

xy(f). In contrast, if we consider fx = fy and
an additional phase delay ∆φ = π

2 , the cosine similarity in (3.20) will be still
bounded between 0 and 1, but it will be a complex number on the imaginary
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Figure 3.5: Examples of application of the coherence Cxy(f) and the phase-
locking vector PLxy on two sines at the same frequency without any delay. The
coherence will be a real number on the complex plane (the red bar in the top
panel) as well as the PLxy (the red bar in the bottom panel).

axis (see the red bar in the top panel of Figure 3.6). Those two figures clearly
highlight how ImCohxy(f) measures the only lagged interaction between the
signals. Therefore, one might interpret the coherence as correlation measure
at each frequency point. However, one may decide to focus on the lagged or
instantaneous interaction based on the objectives of the analysis.

Coherence found numerous applications in the world of neurophysiology [200]. In
case of the neonatal EEG, it is worth to report the studies in neurodevelopment
by [95],[177],[168]. The normal processing pipeline consists of the computation
of MSC and IC in the main EEG frequency bands, which are δ1 = (0.5 − 2]
Hz, δ2 = (2− 4] Hz, θ = (4− 8] Hz, α = (8− 16] Hz and β = (16− 20] Hz.
After proper surrogate testing Section 3.2.3, one can derive the mean of the
coherence function or the maximum value in these bands [96].
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Figure 3.6: Examples of application of the coherence Cxy(f) and the phase-
locking vector PLxy on two sines at the same frequency with a phase delay
∆φ = π

2 . The coherence will be an imaginary number on the complex plane
(the red bar in the top panel) as well as the PLxy (the red bar in the bottom
panel).

Phase synchrony

Alongside coherence and other linear measures, physiological systems may also
synchronize even if signals are not correlated [200]. By synchronization, it is
meant that two phase of two coupled oscillators might lock at any time t, which
implies that:

|mϕx(t)− nϕy(t)| < constant (3.21)

where ϕx(t) and ϕy(t) are the (unwrapped) phases of signals x and y in the
system under investigation. The coefficients m : n are integer multipliers and
they are used to indicate synchronization of oscillators at different velocities.
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The current framework will only discuss the theory related to m = 1 and n = 1.
In order to investigate the degree of phase synchronization stated in (3.21),
one might compute two synchrony indices which rely on the phase difference
γxy(t) = ϕx(t)− ϕy(t). The first one is the phase locking value PLVxy, which
is defined as:

PLVxy = 1
N

∣∣∣ N∑
t=0

ejγxy(t)
∣∣∣, (3.22)

where N is the length of the data record. The second is one is the phase lag
index PLIxy

PLIxy = 1
N

∣∣∣∣ N∑
t=0

sgn(γxy(t))
∣∣∣∣, (3.23)

where sgn is the sign function. Similarly to the coherence, one can consider the
complex number

PLxy = 1
N

N∑
t=0

ejγxy(t), (3.24)

to understand the meaning of the phase synchrony indices. For simplicity, we
can also consider two sines at the same frequency, as reported in Figure 3.5 and
Figure 3.6. By definition, the phases of two sines will be linearly increasing,
but the phase difference will be constant. Therefore, the complex phase-locking
vector will be PLxy = 1

N

∑N
t=0 e

jγxy(t) = ej∆φxy , where ∆φxy is the phase-delay
between two sines. If we consider an instantaneous interaction, PLxy will be
a real number on the complex plane (see the red bar in the bottom panel of
Figure 3.5). If there is a lagged interaction with ∆φ = π

2 , PLxy will be an
imaginary number on the complex plane (see the red bar in the bottom panel of
Figure 3.5). One can clearly see that PLVxy is just the absolute value of PLxy
that captures the instantaneous interactions, while the imaginary part of PLxy
and the distribution of γxy(t) only focus on the lagged interactions.

Both PLVxy and PLIxy were involved in numerous applications that considered
a variety of clinical domains (e.g. Parkinson, Alzheimer and so on) and different
recording modalities (e.g. MEG and EEG) as well as simulated and real datasets
[200],[240]. Stam et al. also highlighted the parallelism between phase-locking
and coherence indices: PLV normally measures the instantaneous connectivity,
while PLI focuses on the lagged interactions and is, therefore, resistant to
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volume conduction. By definitions in (3.22), the phase locking will reflect
both zero-lag differences and lagged interactions. Although it is insensitive to
the amplitude since it is based on the phase, PLVxy will be high in case of
sources mix. On the contrary, PLIxy investigates the asymmetry in distribution
of γxy(t): if a difference in phase persists, the index will be non-zero. An
asymmetry in phase difference implies a consistent lag or time-delay between
signals.

Phase synchrony requires phase extraction before its assessment. The phase
of the signal is normally derived in narrower bands than the original full-band
in order to obtain an oscillator at specific frequency. The normal processing
pipeline in a band-pass filtering either by using a discrete wavelet transform
or a continuous wavelet transform consists of the main EEG frequency bands
δ1, δ2, θ, α and β. The Hilbert-transform is applied to derive the phase of the
signal in each frequency band. Therefore, a coupling value can be computed in
the different frequency bands for the different phase methods.

Mutual Information approaches

Since the multivariate analysis tries to establish whether there is any common
information between signals, one can investigate this interdependence by means
of information theoretical tools [200]. The mutual information between signals
X and Y is defined as:

MIXY =
∑

p(x, y) log p(x, y)
p(x)p(y) (3.25)

where the p(x) and p(y) are the probability distributions of the two signals,
while p(x, y) is the joint probability distribution of two signals. The advantage
in this formulation is the generic definition of independence: two signals
are totally independent when p(x, y) = p(x)p(y). Although the information-
theory approach is more generic than synchrony and coherence, the probability
distribution estimation can be computationally expensive, e.g. when using a
parametric-free approach [173].

In case of unknown density distribution, a cost-sound estimation is based on
kernel estimation and reproducing kernel Hilbert spaces (RKHS). Given a joint
distribution p(x, y), we can define the cross-covariance operator as:

Cxy = E([φ(x)− µy]⊗ [ψ(y)− µx]), (3.26)
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where φ(x) and ψ(y) are nonlinear feature maps of x and y (mapping from
domain X ,Y to the RKHS domain F ,G). Furthermore, µx and µy are the
expected value of the two feature maps: µx := E(φ(x)) and µx := E(ψ(y))),
while ⊗ is the tensor product [244],[98]. The cross-covariance operator is a
generalization of the cross-covariance matrix between two random vectors or
signals.

Based on the (3.26), one can define Hilbert - Schmidt Dependence (HSD) as
follows

HSD(p(x, y),F ,G) = ||Cxy||2HS , (3.27)

which indicates that two signals are independent if HSD is null, given a certain
RKHS. The powerful advantage to estimate MI via HSD is the empirical
estimate of the RKHS dependence [98], which is computed as follows:

HSD = (1−N)−1tr(KHLH), (3.28)

where K,H,L ∈ RN , tr is the trace of the matrix KHLH and N is the length
of the signal. K is the associated kernel to φ(x) and L is the associated to ψ(x),
i.e. K = k(xi, xj) =< φ(xi)φ(xj) > and L = l(xi, xj) =< ψ(xi)ψ(xj) >. The
matrix H is defined as H = I− 1

N 11T . In a nutshell, one can estimate HSD
in the moment a kernel function is defined and substitute the MI with HSD.

The mutual information found also numerous applications in MEG and EEG in
variety of clinical domains, such as synchrony and coherence. In the context of
this thesis, we decided to compute HSD in narrower bands than the original
full-band similarly to the synchrony approaches. Therefore, we applied a discrete
wavelet transform or a continuous wavelet transform to main EEG frequency
bands δ1, δ2, θ, α and β and compute MI in different frequency bands.

Time-frequency coherence

The methods considered so far implied stationarity or stable dynamics. However,
signals such as the neonatal EEG can vary their spectral properties over
time [251]. The approach of coherency can be extended to a time-frequency
distribution approach thanks to the continuous wavelet transform (CWT),
already described in section 3.1.1. The time-frequency coherency is computed
as the continuous wavelet coherence:

Cxi↔xj (t, f) =
sxi↔xj (t, f)√
sxi(t, f)sxj (t, f)

, (3.29)
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where sxi↔xj (t, f) is the cross-scalogram between the signal xi and xj , sxi(t, f)
and sxj (t, f) are the autoscalogram of the signals [207]. If sxi(t, f) is normally
computed as the squared magnitude of the wavelet transform, i.e. sxi(t, f) =
|Wii(t, f)|2, sxi↔xj (t, f) is the cross-product of the wavelet-transform xi and
xj , i.e. sxi↔xj (t, f) = W ∗ii(t, f)Wjj(t, f). The wavelet transforms are computed
according to (3.4) and the mother wavelet is analytic Morlet, which is a complex
function, for both the cross-scalogram and the autoscalograms. The clear
advantage of this type of wavelet is clear in a multivariate analysis, because one
may decide to compute both a magnitude squared wavelet coherence and an
imaginary wavelet coherence as follows:

k2
xi↔xj (t, f) = |Cxi↔xj (t, f)|2, (3.30)

ImCohxi↔xj (t, f) = I(Cxi↔xj (t, f)), (3.31)

The time-variant coherence has been instrumental in the description of the
interaction between heart-rate variability and EEG, whose interdependence can
variate during epilepsy [207] or neonatal burst activity [230]. The equations
(3.30) and (3.31) clearly show that wavelets investigate the dynamics of the
coupling over time. Similarly to the synchrony approach, the signal is band-pass
filtered in the reported frequency bands for EEG or in V LF , LF and HF in case
of HRV. As shown by another study [225], the match between temporal scales
of HRV and EEG is normally reached in two steps. First, the EEG oscillations
are extracted with wavelet-based approaches. Second, the Hilbert-transform
amplitude is derived and the signal is downsampled to sampling frequency of
the HRV.

3.2.2 Effective Connectivity

Unlike functional connectivity, effective connectivity tries to infer the direction
of the interdependence or coupling and, therefore, relies on a specific model
how data were caused in the observed system [91]. In general, a common
strategy to estimate the direction and the coupling in the multivariate
analysis is the computation of different models and the comparison among
those. The main concept is the following: if the computed models are
statistically different, one can infer the directions or a first approximation
of the investigated connectivity. However, directionality methods have specific
underlying hypotheses which is always fundamental to report to provide a full
overview of the estimated interaction [91]. Consequently, the scientific literature
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about effective connectivity presents different methods to assess directional
coupling among time series [35].

In the context of this thesis, the focus of most of the methods is on the causal
investigation of G-causality. Based on the importance of temporal ordering of
events, both Wiener and Granger defined causal relationship as follows: if two
signals X and Y are recorded simultaneously and signal Y is better predicted if
both the past samples of two signals are incorporated in the prediction, signal
X is said to cause Y [14],[200]. Granger specifically developed regression models
to explain the future Y in case of linear forecasting modeling. Therefore, it is
commonly said that X Granger-causes to Y , in order to highlight the specific
domain and hypotheses of this definition [14]. Figure 3.7 shows an example of
this type of causal-relationship in the context of neurophysiology: the future
sample of the EEG signal Yt can be predicted by the past samples Yt−k and
Xt−k.

However, Figure 3.7 also shows that multiple recordings are often collected in
biomedicine and the applicability of the Granger-cause definition should go be-
yond the bivariate case X and Y . A common framework to estimate directional
interdependencies with multiple channels is the conditional multivariate Granger
causality (cMVGC), which is based on Vector AutoRegressive (VAR) modeling
and often referred to as G-connectivity or G-causality [18],[14], [224], [173]. This
type of modeling aims to estimate the active direct link between two channels
in the time domain given the existence of other signals in the experiment of
interest. Specifically, the cMVGC can be estimated by fitting AutoRegressive
(AR) models or via information dynamics, which are respectively described in
[18] and [173].

Granger Causality

The first method employed to assess the G-causality among EEG channels
was Granger Causality (GC) with a VAR modelling framework, following the
formulation by [20]. A pth order multivariate autoregressive model VAR(p)
takes the form:

Ut =
p∑
k=1

Ak ·Ut−k + ε(t), (3.32)

where Ut is a collection of process Ui, while Ak and ε(t) are respectively the
regression coefficient matrices and the stochastic process residuals. In the
conditional scenario [20], where we want to know the pairwise influence of
process Xt over Yt considering the presence of the other Ui variables, Ut can
be rewritten as:
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σ(u)

σ(r)YtYt−k

Xt−k
Xt

Zt−k

Figure 3.7: An explanation of the meaning of Granger Causality. The uncertainty
of the prediction of the signal EEGY is given by the two funnels in grey. The
future of Yt has greater variance (and hence uncertainty) if we only consider the
the past samples of Zt. This estimation risk σ(r) will diverge the longer the time
span that one wants to investigate into the future (as indicated by the bigger
black dashed double arrow). On the contrary, the variance of estimation σ(u) is
smaller in case we also consider the past samples Xt−k and the divergence of
the estimation will be limited (as indicated by the smaller double blue arrow).

Ut =

Xt

Yt

Zt

 , (3.33)

where Xt and Yt are the two time series of interest, while Zt represents the
third set of variables involved in the analysis. In our study, Xt and Yt can
be two EEG channels, e.g. EEGY and EEGx in Figure 3.7. Consequently,
Zt will be a vector time series which contain the remaining EEG channels
(EEGZ,1 and EEGZ,2 in Figure 3.7). Based on the V AR(p) model (3.32) and
the split defined in (3.33), we may actually explain the future of Yt based on
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the following full and reduced regressions

Yt =
p∑
k=1

Ayy ·Yt−k +
p∑
k=1

Ayx ·Xt−k+

+
p∑
k=1

Ayz · Zt−k + εy(t),

(3.34)

Yt =
p∑
k=1

Ãyy ·Yt−k +
p∑
k=1

Ãyz · Zt−k + ε̃y(t). (3.35)

In both cases we consider the conditioning variable Zt, although only the first
model considers explicitly the influence of Xt. The difference is also highlighted
by the two regression coefficient matrices Ayy and Ãyy. In order to test whether
the coefficient matrices Ayx are significantly different from zero, the Granger
Causality is defined as the log-likelihood ratio:

FX→Y |Z = log
˜|Σyy|
|Σyy|

= log σ
(r)

σ(u) , (3.36)

where Σyy and Σ̃yy are the covariance matrices of the residuals εy(t) and ε̃y(t).
As reported in Figure 3.7, if we consider only target EEG signal Yt, |Σyy|
and |Σ̃yy| coincide with the variances σ(r) and σ(u) of the (monodimensional)
residuals εy(t) and ε̃y(t). The letter r stands for the reduced model in (3.35),
while u is for the full model (3.34). Based on this multivariate framework,
the G-causality basically quantifies the reduction of the prediction error if the
variable X is added to explanatory variables of Y , one of which is the variable
Z [18]. An explanation of the meaning of FX→Y |Z is reported in Figure 3.7.
The future of the signal EEGY starts at the time-point t and the variance or
the uncertainty is given by the two funnels in grey. The future of Yt has greater
variance (and hence uncertainty) if we only consider the past samples of Zt.
This estimation risk σ(r) will diverge with time. On the contrary, the variance
of estimation σ(u) is smaller in case we also consider the past samples Xt−k and
the divergence of the estimation will be limited. Based on Figure 3.7, one can
understand the concept of comparison of different models to infer causality.

Friston et al. highlighted the necessity to compare the models to test the
statistical significance of the model [91]. Although the value of GC can be
used as amount of the information transfer, the clear-cut advantage of this
parametric modeling is one of its statistical properties. According to [173] and
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[18], the GC follows an asymptotic F-distribution, like R2 statistics. Therefore,
one can implement an F-test or log-likelihood ratio test to assess the statistical
validity of this coupling.

Unlike the classical Granger causality test limited to the bivariate case, FX→Y |Z
is defined as conditional multivariate Granger causality. A special case of the
conditional scenario is the pairwise conditional G-causality, where the pairwise
effective couplings among all pair of variable Ui and Uj contained in Ut are
measured. In other words, when all the possible combinations of X and Y are
tested and the dimension of Y and X strictly limited to one signal. In principle,
the cMVGC can consider Y and X are multidimensional as well. However, the
methods of this thesis will be limited to pairwise conditional causalities.

Since we take in account the spurious effect due to the presence of other variables
(i.e. the coupling between Ui and Uj conditioned by the presence of the other
variables), the cMVGC framework defines a set M ×M pairwise conditional
causalities as follows:

Gij(U) = FUi→Uj |U[ij] , (3.37)
where M is the number of processes. Therefore, all the pairwise coupling
estimates are contained in one single matrix. Granger-causality was investigated
in multiple applications, especially involving EEG or even subcortical activity
[200]. In case of neonatal EEG, GC gives the specific opportunity to investigate
the aforementioned asynchrony and assess whether the cortical connectivity
changes with the neurodevelopment. Similarly to the imaginary coherence and
PLI, the GC is uniquely placed to investigate the lagged-interactions, which
have a specific role in the definition of asynchrony among neonatal bursts. Unlike
other brain-connectivity approaches, effective connectivity were far less-applied
in the neonatology research and therefore new insights might be obtained.

Transfer Entropy

The second method applied to assess the G-causality among EEG channels is
Transfer Entropy, which is defined according to information dynamics framework
by Schreiber et al. [227] as follows:

TX→Y =
∑

p(Yt,Xm
t ,Yn

t ) log p(Yt|X
m
t ,Yn

t )
p(Yt|Yn

t ) , (3.38)

where p(Yt|Xm
t ,Yn

t ) is the conditional probability that Y at times t is explained
by past values of X and Y with respective memory order m and n. p(Yt|Yn

t ) is
the conditional probability that Y at times t is only explained by past values of
Y . p(Yt,Xm

t ,Yn
t ) is the joint probability distribution among the three variables
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Yt, Xm
t , Yn

t . The second term is also defined as Kullback-Leibler entropy or
divergence and it communicates a very similar idea to the one reported in
Figure 3.7: the signal X causes signal Y if the probability to have the future
sample of Yt considering the past information of X and Y is higher than the
probability considering only the past samples of Yt. Similarly to GC, TE also
relies on a log-likelihood ratio. Therefore, Transfer entropy inherently implies
directionality (i.e. effective connectivity) [227], [256].

The definition in (3.38) has two main problems. First, it is a bivariate definition.
Second, it requires a method to estimate the conditional probabilities. In
order to estimate the information dynamics coupling in a multivariate context,
Montalto [173] proposed to estimate TE as the difference of two following
conditional entropies (CE):

TX→Y |Z = H(Yt|Yn
t ,Z

p
t )−H(Yt|Yn

t ,Xm
t ,Z

p
t ), (3.39)

where Zpt is introduced. Since we cannot discriminate the exclusive relationship
between two processes X and Y [97], [18], it is possible to investigate the
contribution of time series X in the evolution of time series Y with respect to
all the other agents involved in the analysis. Consequently, we can actually
define Zpt as a vector variable that does contain neither Y nor X or their past
values, and the TX→Y |Z illustrates the transfer of information from X to Y
taking into account other time series involved. One may immediately notice
the similarities of notation between FX→Y |Z and TX→Y |Z.

If we then assume that X, Y , Z have a joint gaussian distribution, the two
CE in (3.39) can be expressed as linear regression of past values of the vector
variables involved in the multivariate system as follows

Yt = AuV u + ξ(t)

Yt = ArV r + ξ(t)
(3.40)

The first equation explains Yt with a regression on the vector V u = [Vx, Vy, Vz],
where Vx,Vy,Vz approximates respectively Xm

t , Yn
t , Zpt with a vector of size p

as follows:
Vx = [Xt−1, Xt−2, . . . , Xt−p]

Vy = [Yt−1, Yt−2, . . . , Yt−p]

Vz = [Zt−1,Zt−2, . . . ,Zt−p]

The second equation explains Yt with a regression on the vector V r = [Vy, Vz],
which only contains Vy,Vz. Equations (3.40) are usually referred to as full and
restricted regressions. The reader can easily recognize the same structure of
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Granger causality equations (3.34) and (3.35), which is asymptotically equivalent
to Transfer entropy [227]. In light of the previous results, TX→Y |Z can be
rewritten as

TX→Y |Z = 1
2 log σ

(r)

σ(u) (3.41)

where σ(r) and σ(u) are the variances of the white noise residuals in (3.40).
Except for a scalar factor, (3.41) is the same expression of (3.36). Therefore,
the interpretation of (3.41) is the same one for (3.36) and reported in Figure 3.7:
the combination of that past samples of X and Y reduces the uncertainty of
prediction compared to the a model that considers only the past samples of Y ,
as highlighted by the two grey funnels (σ(u) < σ(r)).

Similarly to cMVGC, we can define a setM×M pairwise conditional causalities
as follows:

Gij(U) = TUi→Uj |U[ij] , (3.42)
where M is the number of processes. Once again, all the pairwise coupling
estimates are contained in one single M ×M matrix. Similarly to Granger-
causality, TE was investigated in multiple neurophysiological applications [200].
In the context of this thesis, we only looked to a specific case of TE, which
resembles the GC definition. The reason to apply TE in our research was to
add enough redundancy to investigation of the lagged asynchrony and changes
the cortical connectivity throughout the neurodevelopment.

Directionality Index

A more generalized approach than bivariate Granger Causality is the estimation
of directionality in case a dependent dynamics exists between two systems after
phase reconstruction [220]. Similar to the Granger-Causality, this methodology
estimates if the phase dynamics or the future phase of a signal is explained by
the past phase of another signal. Therefore, this method is based on the phases
of two signals or require a phase extraction of those methods, like the synchrony
approaches in Section 3.2.1. The key difference is estimation of a directionality
index (DI) to assess the direction and the intensity of the coupling.

Given two self-sustained oscillators with a weak coupling, their phase dynamics
φ̇1,2 can be expressed as:

φ̇1,2 = ω1,2 + ε1,2f1,2(φ2,1φ1,2) + ξ1,2(t), (3.43)

where ω1,2 are the natural pulse frequencies of the two systems. The functions
f1,2 describe how the interaction between the phases φ1,2 drives the two systems
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and ε1,2 are parameters to describe the intensity of the coupling (usually
ε1,2 � ω1,2). ξ1,2(t) are noise perturbations. The coupling ε1,2 f1,2 (φ2,1, φ1,2)
can be inferred with a least squares fitting procedure, where the digital phase
increments φ1,2 are related with a probe function Fm,n1,2 , which is a finite Fourier
series of order m,n as follows:

∆1,2 = φ1,2(t+ τ)−φ1,2(t) = ω1,2(t)τ +Fm,n1,2 (φ1,2(t), φ2,1(t)) +η1,2(t), (3.44)

ε1,2f1,2 ≈ Fm,n1,2 =
∑
m,n

Am,ne
jmφ1+jnφ2 , (3.45)

where Am,n are the coefficients of the Fourier series in (3.45) and τ is a fixed
interval to sample the phase dynamics. From the smooth function Fm,n1,2 , the
cross-dependencies between phase dynamics can be estimated as:

q2
1,2 =

∫
∂F1,2

∂φ2,1

2
dφ2dφ2 (3.46)

Eventually, the directionality index d1→2 is introduced as

d1→2 = q1 − q2

q1 + q2
(3.47)

which is value bounded between [-1,1]. Consequently, this index gives an
integrated measure of how strongly a system drives (a value close to 1) or how
sensitive it is to be driven (close to -1).

In layman terms, the DI estimates whether the surface in (3.45) has a specific
gradient along one of two phases φ1,2. In case that gradient is non-zero, one
of the two quantities q1,2 will not only be non-zero, but it might happen that
q1 � q2 (or q2 � q1), which implies a specific direction from one system to other.
In case that the gradient is non-zero, the dynamics of two phases is explained
by the coupling contribution in (3.43). In contrast, if the surface is flat and,
therefore, the gradient in (3.45) is null, we have that q1 ≈ q2 and the estimation
of ε1,2f1,2 ≈ 0, which implies that there is no coupling. In conclusion, the two
oscillators have independent dynamics, which means φ̇1,2 = ω1,2 + ξ1,2(t).

The advantage of phase dynamics is the estimation of both linear and nonlinear
coupling. The usage of phases and a generic coupling harmonic function between
them extend the applicability beyond V AR models. However, the disadvantages
have to be stressed before its application. The method is bivariate by design,
which strongly limits its application in brain connectivity or Network Physiology.
The hypothesis of weakly coupled oscillators has to be investigated and a proper
estimation of the phases is required before the assessment of DI. Therefore,
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Rosenblum et al. [220] suggests to apply this methodology only in known
cases of the existence of oscillatory processes. Among those phenomena, it
is worthwhile to mention the influence of the respiration over the heart-rate
(known as respiratory sinus arrhythmia) and the interaction between neonatal
bursts and the heart-rate increases, as shown by [230].

3.2.3 Surrogates and phase analysis

Section 3.2.2 touched upon the concept of statistical validity and statistical
comparison among models to infer the direction of interdependence among
signals. The estimated dependencies derived with the different functional
connectivity methods (but also with the directionality index) might be
completely spurious. In order to test if the signals are really dependent, one
can refer to data surrogates [200].

Surrogates were originally introduced to determine whether a certain property
of a signal significantly differs from Nsurr time-series constructed by either
shuffling the original data or by annihilating specific traits of the considered
signals [140]. Specifically, they were vastly applied to determine if processes
have certain nonlinear properties. If this property or statistic of the original
time series deviated from the surrogates distribution of the same property, the
data record is unlikely to be originated by a linear model. This statistical test
was subsequently extended to multivariate analysis [140], [200]. The concept
is similar to the univariate case: a set of Nsurr surrogates is first constructed
with the objective to destroy any actual dependency among those artificial time-
series. The estimated coupling is actually statistically significant if the estimated
coupling differs from the distribution between signals and the surrogates. The
statistical test is normally built on the null-hypothesis that the signals are
independent and the surrogate test rejects the null-hypothesis.

Since the described functional connectivity methods rely on lagged interactions
(coherence) or synchrony of phase (PLV and PLI), the generation of surrogate
for this type of multivariate analysis is based on the original record such that
only the linear properties are preserved, while the phase of the signal is disrupted.
Specifically, the data are shuffled via the adjusted-amplitude Fourier transform
algorithm (AAFT) in each epoch, which rescales the signals with a Gaussian
process and randomizes the phase to destroy any lagged interaction or synchrony
among the surrogate signals [228]. Consequently, the AAFT surrogates data
testing consists in the re-estimation of the coupling with the surrogates and test
whether the original lagged interaction is actually different from the distribution
of lagged interactions of the surrogates. In case of the directionaliy index
(Section 3.2.2), the coupling specifically concentrates on the phase dynamics and
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surrogates via the Cycle-Phase permutation testing, which randomly permutes
cycles of a signal phase to generate surrogates [140]. In both cases, whether the
null hypothesis is rejected and the value obtained with the experimental data is
different, the coupling is defined as significant and it is normally preserved in
set of M ×M dependencies. Otherwise, the coupling is set to zero.

Surrogation might be useful to assess the robustness of dependencies in the world
of neurophysiology, where large datasets are collected and the risk of obtaining
a coupling by chance is present. However, the surrogation might also be
computationally expensive since it requires re-estimation of the interdependence
among surrogates time series. In order to reduce the computational costs,
Gonzalez et al. suggested to reduce the number of surrogates to the specific
level of statistical significance that is required [95]. For each coupling between
two generic signals X and Y, the couplings between X and 19 surrogates of Y
are estimated. The coupling is considered significant if and only if it is higher
than the surrogate-based 19 interaction intensities. The number 19 guarantees
an α = 0.05 significance level since Nsurr = 1

α − 1 = 19. Another approach is
to know the distribution of the estimated coupling and avoid surrogates, which
is only possible in case the data-generation model is known. This has already
been introduced for Granger Causality and Transfer Entropy in Section 3.2.2,
which are known to follow an F-distribution and have the advantage to be
automatically tested for statistical significance.

3.2.4 Graph indices

The list of reported multivariate approaches has the common characteristic to
derive a set of M ×M couplings. Even if the surrogate testing is supposed to
preserve only the real coupling, the general pipeline of any connectivity method
is reported in Figure 3.8. Given a set of signal Sj or xj , one estimates the
generic dependencies Cxi↔xj which can be reorganized in the following coupling
matrix M ×M :

A = Aij = Cxi↔xj , (3.48)

where M is the number of processes and i, j = 1, ..,M . The matrix A = Aij is
defined as an adjacency matrix A and reports the intensity of interaction among
all possible pairwise interactions, as shown in the right-top panel of Figure 3.8.
The intensity can be the original coupling or can be rescaled between 0 and
1. In general, A describes a weighted graph [43],[20], as highlighted by the
central bottom of Figure 3.8. A graph is a diagram of points or nodes, whose
relations are defined by the connecting lines among them. The adjacency matrix



60 MATHEMATICAL BACKGROUND

Sj = xj

Compute Connectivity

Cxi↔xj

G = Aij

A = Aij = Cxi↔xj

Derive nodes
and edges

Figure 3.8: The typical processing pipeline that leads a multivariate analysis
to a weighted graph. Given a starting set of signal Sj = xj , one computes the
M ×M pairwise interactions Cxi↔xj and derives the adjacency matrix A. The
latter can provide the information to draw the associated weighted graphs: each
column represents a node of the matrix and the entries of the matrix represent
both the existence and the weight of each link. The intensity of the coupling is
normally highlighted with a different thickness of the edge.

will allow to represent this graph (as also indicated by the name adjacency).
Each column represents a node and a signal in case of multivariate analysis,
while the entries represent the link or edges among the nodes. Therefore, if
each node represents a signal (as also shown in the graph of Figure 3.8), the
existence of dependency among those nodes is represented by the drawn blue
link. The intensity of the coupling is represented by the weight associated to
the edge, which is normally represented by a different thickness of the graph.
As described in details by [43], one might consider to apply a specific threshold
to the coupling in A to eliminate spurious connections and binarize the network.
It means that the intensity of the information is lost for the sake of representing
the most important connections. As far as the application of graph is concerned,
the full information of adjacency matrix will be considered and the couplings
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will be pruned if and only if they do not pass surrogate testing.

Although any connectivity matrix generates an adjaceny matrix, functional
connectivity and effective connectivity matrices have different properties. The
FC methods generate a symmetric matrix A, which results in an undirected
graphs (as highlighted by xi ↔ xj and by the absence of any arrow in any
graph of Figure 3.8). On the contrary, effective connectivity methods generate
an asymmetric matrix as follows,

A = Aij = Cxi→xj , (3.49)

which results in a directed graph, as highlighted by xi → xj . It normally
modifies the final graph with an arrow to highlight the direction of the coupling.

Eventually, each multivariate analysis will start from a set of signals, compute the
pairwise interactions, derive the matrix A after surrogate testing and represent
the associated weighted graphs. The purpose to the associated network is
twofold. On one hand, the number of couplings that a multivariate approach
generates in general M2 −M and a dedicated investigation to each of them
risks to be unfeasible. Graph theory can significantly reduce the amount of
information generated by the multivariate analysis [43],[38]. On the other,
the complexity properties of the network can be investigated. The random
interactions among different signals might emerge in a regular architecture whose
key organizational principles might be shared among different physiological
systems and they can be modified by neurodevelopment or different physiological
states [43].

Consequently, those organizational principles can be assessed by a list of
topological and spectral indices to describe the architecture of the estimated
network. A visual representation of some of those topological and spectral
indices is reported in three graph examples reported in Figure 3.9. The most
common metrics to assess the level of network’s integration are the path length,
the global efficiency, the diameter, the clustering coefficient and the eccentricity.

• The path length is the minimum number of edges or the shortest path
that must be traversed to go from one node to another, as shown in the
blue path reported in Figure 3.9. The shortest route to move from the
node in the extreme bottom left to extreme top right node is a diagonal
walk throughout the graph. Any other walk will risk to have a longer
route. The average of all path lengths or characteristic path length is
the mean of the nodes’ shortest paths and can be considered a measure
of network integration capacity [26]. The shorter the blue paths of all
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nodes, the higher the integration in the network, because few steps will
be needed to move from any node to any other one.

• The global efficiency is the average of the inverse path length. It is
another measure of integration and it can be also interpreted in a energy
perspective: the higher the efficiency, the lower the energy dissipated
to move inside the network. However, Peters et al. [202] highlighted
that the global efficiency is primarily driven by shorter paths (stronger
connections) while characteristic path length is primarily driven by longer
paths (weaker connections).

• The clustering coefficient is defined as the average of all weighted
triangles around a node and mirrors the graph coupling density [81]. A
visual interpretation of this index is reported in Figure 3.9. A triangle
is here intended as the smallest non-trivial motif that a node can form
with two neighboring nodes, as represented in the top-left panel graph.
The clustering coefficient quantifies the number of connections that exist
between the nearest neighbours of a node as a proportion of the maximum
number of possible connections [43]. It is possible to derive as the average
of all clustering coefficients as overall measure of clustering or level
of interconnection of all nodes in the network as further measure of
integration.

• The eccentricity of a node represents the maximum distance from one
node to any other node in the graph and the the diameter of graph is
then defined as the maximum eccentricity in the graph.

• One can compute also the graph density as the sum of all significant
couplings of the adjacency matrix [21], which represents the energy of the
entire network [43].

Alongside those network metrics, the spectral indices such as the spectral radius,
the spectral gap and the algebraic connectivity were considered.

• The spectral radius is the maximal absolute eigenvalue of the adjacency
matrix [30]. Also known as "Page Rank", it represents the dominance
degree of a node in the network: the higher the value, the higher the
centrality of the dominant node in the network. In other words, the
dominant node behaves as the center of a hub [30]. An example of graph
with a high spectral radius is reported in Figure 3.9, where the blue node
has a dominant role in the provincial hub of Figure 3.9.

• Another way to look into the change of dominance is the spectral gap,
which is the difference between the first and the second absolute eigenvalues
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of the adjacency matrix, [77]. If the difference decreases, the node with
highest eigenvalue (the spectral radius) is less dominant with respect to
the other nodes in the network. Therefore, the blue node in Figure 3.9
will determine a graph with a high spectral radius. However, Estrada [77]
argued that the spectral gap behaves as a measure of clustering in the
undirected graph: in case of lower values of spectral gap, the graph can
present small clusters in the network.

• The last spectral measure is the algebraic connectivity, which is the
second smallest eigenvalue of the Laplacian matrix L and it illustrates
how easily a graph can be divided into clusters or communities [38]. For
example, the graph reported in Figure 3.9 has high algebraic connectivity
because of the two distinct communities. In case of an undirected graph,
the Laplacian matrix can be obtained as follows

L = D −A (3.50)

where A is the adjacency matrix obtained by the effective connectivity
tools described above and D is the degree matrix of the associated graph
[49]. Since both A and D are symmetric, L will be also symmetric and
the eigenvalues will be real. In case of a directed graph, the Laplacian
matrix Ldir will not be symmetric. Therefore Lsym can be obtained as
follows

Ldir = D −A

Lsym = 1
2(Ldir + LTdir) = D − A+AT

2

(3.51)

where A is the transposed adjacency matrix.

Alongside the integration and spectral indices, the amount of superfluous
connections of the adjacency matrix can also be investigated. Any graph can
risk to be overly connected or under-connected. Even after surrogate testing,
some connections can emerge as significant, but they result from physiological
redundant connectivity [202]. Therefore, we can test the resilience, which is
the capacity of the network to keep the global connectivity high even if some
connections are removed. Therefore, suppose we order all the connections in
descending order based on the intensity of the coupling. Suppose also the set
of original weights of A is defined as w0

ij . The number nsup of superfluous
connections is derived as the number that maximizes the following quantity
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max
n

H(wij(n)) + E(wij(n)) =

= −
∑
ij

wij(n) log(wij(n)) +
∑
ij

(wij(n)− w0
ij)2 (3.52)

where H(wij(n)) is the entropy of the matrix A when n weights were removed.
The values wij(n) represent the remaining non-zero weights, while E(wij(n))
is the squared error between the new matrix A and the original matrix. The
number nsup represents the number of removed connections that maintain the
global connectivity high without significant deviation from the original matrix.
The goal is to remove as many connections as possible, which results in an
increasing error and decreasing connectivity entropy. In an extreme scenario, a
redundant network keeps the global entropy high even if there are few non-zero
coupling in the matrix; and, in general, they will have a higher nsup. An
overview of all graph indices is reported in Table 3.1.

Table 3.1: An overview of all graph metrics that have been used in the study.

Overview of integration indices
Path length Mean of the nodes’ shortest paths
Global Efficiency Average of the inverse path lengths.
Clustering coefficient Mean of the nodes’ triangles

intensity around each node
Eccentricity Maximum distance from one node

to any other node in the graph
Diameter Maximum graph eccentricity
Causal density Sum of all significant couplings in A

Overview of spectral indices
Spectral radius λ1(A) : first eigenvalue

of adjacency matrix A
Spectral gap λ1(A)− λ2(A): the difference

between the first two eigenvalues
of matrix A

Algebraic connectivity λM−1(L): the second
smallest eigenvalue

of the Laplacian matrix L or Lsym
Overview of resilience indices

Superfluous connections nsup(A) : number of
superfluous connections
of adjacency matrix A
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Community1

Community2

Motif

Provincial Hub

Path Length

Clustering Coefficient

Figure 3.9: Three examples of graphs and key organizational properties that can
be computed with graph theory. The figure has been adapted from [43]. The
two top figures show some key topological properties: the left graph shows the
meaning of triangle motifs, while the right one reports an example of path length
and a node with high clustering coefficient. The bottom graph shows a graph
with different distinctive spectral properties: the two clear-cut communities will
increase the algebraic connectivity of this graph, while the dominant hub on
the right will lead to a high spectral radius and spectral gap.

3.3 Regression Models

3.3.1 Ordinary Least Squares regression

The ordinary least squares linear regression or fixed-effect regression is the most
common model to examine the relationship between an output or dependent
variable and one or more input or independent variables [217] [226]. The most
generic case refers to the multiple regression where the dependent variable y
and its variance can be explained by a set of dependent variables xp:

yi = β0 + β1xi1 + β2xi2 + ...βpxip + εi1 (3.53)

where the index i indicates the number of instances in the dataset, while βp
represents the coefficient of the regression model. The model is normally derived
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with a pseudoinverse of the dataset X, which collects all instances xi and
variables xp, as follows:

βββ = (XTX)−1(XTy) = X+y (3.54)

where βββ is the vector of the coefficient βp and XT is the transpose of X. The
matrix X+ is the Moore-Penrose pseudoinverse matrix. Equation 3.54 is derived
as the convex solution of the sum of squared errors εi minimization. The error
is defined as follows:

εi = yi − ŷi (3.55)

where ŷi represents the estimated value for the instance i of the dataset, while
the sum of squared errors SSres is computed as:

SSres =
∑

ε2i =
∑

(yi − ŷi)2 (3.56)

The most common performance metric for the linear regression is the coefficient
of determination R2, which is basically the fraction of the total variation
explained by the linear regression model:

R2 = explained variation
total variation = SSreg

SStot
= 1− SSres

SStot
(3.57)

where SSreg and SStot are respectively defined as the sum of squares of the
estimated variables ŷi and the total sum of squares of the output variable yi as
follows:

SSreg =
∑

(ŷi − ȳ)2 (3.58)

SStot =
∑

(yi − ȳ)2 (3.59)

The variable ȳ represents the mean of all observations of the output variable.
Other common performance metrics are the root mean squared error (RMSE)
and the mean absolute error (MAE), which are defined as follows:

RMSE = 1
N

√
SSres = 1

N

√∑
(yi − ŷi)2 (3.60)
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MAE = 1
N

√∑
|yi − ŷi| (3.61)

where N is the number of instances of the dataset. If the RMSE is simply
the square root of the SSreg, MAE represents the average absolute deviation
from the estimated curve. The absolute value is normally used to reduce the
influence of outliers on the performance metrics.

3.3.2 Linear mixed-effect regression

Equation 3.54 underlines some fundamental hypothesis. The first assumption is
the independence of the input variable or absence of collinearity. Although this
might seriously hinder the pseudo-inversion of X, the collinearity is normally
solved with a proper selection of the input variables to avoid interdependence.
A greater concern of biomedical datasets is the randomness of the different
instances. Although the different values should be drawn randomly from the
underlying data distribution, this is not generally the case if the data comes
from patients recorded at different time points. This might seriously affect the
hypothesis of equal variance of εi for each instance (homoscedasticity), since
there are some hidden autocorrelations in the same patients’ data. Therefore, a
random-effect has to be added to the fixed effect of βp coefficients. The model
reported in the equation 3.53 is corrected as follows:

yi = β0 + β1x
(m)
i1 + β2x

(m)
i2 + ...+ βpx

(m)
ip +

b
(m)
0 + b

(m)
1 x

(m)
i1 + b

(m)
2 x

(m)
i2 + ...+ b(m)

p x
(m)
ip + ε

(m)
i .

(3.62)

The coefficients βp still represent OLS coefficients which do not vary and hence,
they are fixed, while the coefficients b(m)

p are random variables themselves. The
variability of the coefficients is normally introduced by a grouping variable
whose M levels are indicated by the variable (m) (m = 1...,M). The grouping
variable considers data points that are not fully independent in one single group
or level (e.g. data of the same patient). The distribution of random effects is:

b(m) ∼ N (0,Σb), (3.63)

which means that b(m) follows a normal variate and Σb is the covariance matrix
of the random coefficients, i.e.
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Σb =

 σ1 ρ1,2 . . .
... . . .

ρ1,p σp


.

One can further simplify the expressions in equations 3.62 and 3.63 in one single
normal variate γp ∼ N (β,Σb), where the expected value of the coefficients is
the fixed effect βp with some variations added by the Σb of the random effects.
Hence, the model is called linear-mixed effect model [217].

In order to estimate both the vector of fixed coefficients βββ and the covariance
matrix Σb, one may introduce the random effect variable z(m)

ip to substitute
the group-level variable x(m)

ip . The z variable expands and nests the x variable
for all possible M-levels up to the dimensionality RqM×1. The dimension q
represents the number of coefficients which will have a random effect upon the
fixed-effect and, in general, q ≤ p. Consequently, one may rewrite (3.62) as
follows:

y = Xβββ + Zu + εεε (3.64)

where y = {yi} ∈ RN×1, X = {xip} ∈ RN×p, Z = {z(m)
ip } ∈ RN×qM and

εεε = {ε(m)
i } ∈ RN×1. The vector of u is the random complement to βββ, which

implies u = {b(m)
ip } ∈ RqM×1.

In layman terms, one expects that the variations Σbp induced by each group
should be small enough not to hinder the overall model designed by the fixed
effect and, therefore, the term Zu negligible. A visual explanation is reported
in Figure 3.10. Each group is indicated by different colors. The randomness of
the different groups on the intercept β0 and the slope β1 shift and change the
orientation of the models in the Cartesian plane. However, the variations are
not big enough to deviate the overall trend in the left panel. On the contrary,
the right panel of the figure shows the variations introduced by the different
groups can distort and annihilate the expected trend.

Similarly to OLS regression, the linear-mixed effect models use R2, RMSE
and MAE as performance metrics. However, the R2 is corrected to take into
account the effect of the randomization due to the grouping variable, which is
also defined as conditional R2, [178]. It is normally expressed as follows:
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a) b)

Figure 3.10: Linear mixed effect model examples

R2 = explained variation
total variation = SSreg

SStot
= SSreg,fixed + SSreg,group
SSreg,fixed + SSreg,group + SSres

,

(3.65)

where the difference from (3.57) consists in the split of contribution of the
variance of the estimated ŷi given by the fixed effects SSreg,fixed and the
variance of the grouping variable due to the normal distribution of the random
coefficients bp (SSreg,group). The latter is actually computed as the determinant
of Σb [178].

3.3.3 LASSO

The OLS regression in (3.54) can be rewritten as the following optimization
problem:

min
βββ
||Xβββ − y||22, (3.66)

which highlights that the vector βββ is obtained as minimization of the sum of the
squared errors εi. However, one can introduce a penalty term to satisfy certain
conditions, such as model simplicity. The regression should not only be able to
estimate the target variable, but it should consider as few variables as possible.
This implies that some coefficients in βββ are set to zero. A very common way to
select some of the variables in the regression model is adding a `1-norm penalty
to (3.67) as follows:
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min
βββ
||Xβββ − y||22 + λ||βββ||1. (3.67)

This approach is known as Least-Absolute Shrinkage and Selection Operator
(LASSO) and the hyperparameter λ makes a trade-off between approximation
error and sparsity [247]. Although it is defined for regression, LASSO is one of
the most common features selection method. In a supervised learning strategy,
LASSO is commonly used to reduce the feature subset before obtaining any
regression or classification model.

3.4 Classification Models

Classification as a supervised learning strategy tries to distinguish two or more
classes in a group of data points. The classification models aim to find the
best possible decision boundary or function that does not only separate the
considered data (training dataset), but it can generalize to new data points (test
set). Several ways to find a decision boundary exist, such as neural networks,
support vector machines, linear discriminant analysis or random forest.

Although neural networks (NN) are well-known to approximate any possible
boundary (they are known as universal approximators), the weights of the
neural networks are normally computed with non-convex approaches. Therefore,
the solution is not unique and their convergence might be slow. In addition,
their high number of weights and layers might increase the risk of overfitting
[243]. Similarly, random forest (RF) might approximate any decision boundary,
but they are not exempted from the risk of overfitting. Thanks to the bagging
process, multiple decision trees can be trained to approximate the decision
function in an optimal way. However, all features have to be considered in
order to select the final random forest model [108]. In this section, different
approaches are discussed to address some of the shortcomings of NN and RF.
These methodologies are support vector machines, least-squares support vector
machines, linear discriminant analysis (LDA) and subspace LDA.

3.4.1 Support vector machines

Support vector machines are a supervised learning method originally proposed
for a 2-class problem and later extended to multiclass problems [252],[54],[152].

The main idea of SVMs is based on the construction of an optimal separating
hyperplane between a positive class cluster (C+) and a negative class cluster
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(C−) with maximal margin. Consider a given training set {xk, yk}Nk=1 with
input data xk ∈ Rd and the output data yk ∈ R with class labels yk ∈ {−1,+1}
and the linear classifier

y(x) = sign(wTx+ b), (3.68)

where w and b represents the parameters of the hyperplane for the class
separation. The two groups C+ and C− can be separated if:

{
wTxk + b ≥ +1 if yk = 1
wTxk + b ≤ −1 if yk = −1,

(3.69)

which can be summarized in one single inequality as follows:

yk[wTxk + b] ≥ 1, k = 1, ...N (3.70)

In the context of the optimization theory, the support vector machines are
defined such that the weights of the hyperplane maximize the so-called margin,
which is the distance between the hyperplanes defined in equation 3.69, as also
shown in Figure 3.11. Therefore, the weights are defined by the solution of the
following problem:

min
w,b

Jp(w) = 1
2w

Tw (3.71)

such that yk[wTxk + b] ≥ 1, k = 1, ...N

Applying (3.71), we defined the Langragian as the equation:

L(w, b, α) = 1
2w

Tw −
N∑
k=1

αk(yk[wTxk + b]− 1), (3.72)

where the coefficients αk are known as Langrangian multipliers and, in general,
αk ≥ 0 for k = 1, ...N . The solution of (3.72) is characterized by the saddle
point of the Lagrangian:

max
α

min
w,b
L(w, b, α). (3.73)
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However, most of the problems in real-life problems consists in non-separable
cases since data inputs might be missing or data might be noisy or unreliable.
Therefore, one has to tolerate some data points misclassification. This is
normally done by adding a slack or error variable to (3.70) as follows:

yk[wTxk + b] ≥ 1− ξk, k = 1, ...N (3.74)

where ξk ≥ 1 allows violation of the inequalities (3.70) and, in general, ξk ≥ 0.
Therefore, one might reformulate (3.71) as follows:

min
w,b

Jp(w, ξ) = 1
2w

Tw + c

N∑
k=1

ξk, (3.75)

such that yk[wTxk + b] ≥ 1− ξk, k = 1, ...N

ξk ≥ 0, k = 1, ...N

where c is a positive real constant. Consequently, one might consider the
following Lagrangian

L(w, b, ξ;α, ν) = Jp(w, ξ)−
N∑
k=1

αk(yk[wTxk + b]− 1 + ξk)−
N∑
k=1

νkξk, (3.76)

where νk ≥ 0 for k = 1, ...N is a second set of Lagrange multipliers added for
the additional slack variables ξk. The new solution is then given by the saddle
point of the new Lagrangian:

max
α,ν

min
w,b,ξ
L(w, b, ξ;α, ν) (3.77)

Applying the Karushn-Kuhn-Tucker conditions, one obtains:


∂L
∂w = 0→ w =

∑N
k=1 αkykxk

∂L
∂b = 0→

∑N
k=1 αkyk = 0

∂L
∂ξk

= 0→ 0 ≤ αk ≤ c
, (3.78)
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which gives the dual quadratic programming problem after replacing (3.78) in
(3.75):

min
w,b

JD(α) = −1
2

N∑
k=1

ykylx
T
k xlαkαl +

N∑
k=1

αk, (3.79)

such that
N∑
k=1

αkyk = 0,

0 ≤ αk ≤ c, k = 1, ...N

for k, l = 1, ...N . In contrast with (3.79), the formulation (3.75) is defined as
the primal problem. Hence, one might reformulate (3.68) as follows:

y(x) = sign(αkykxTk x+ b). (3.80)

The advantage of (3.79) is twofold. The focus shifts from the weight search
of (3.75) to the search of αk. Based on the conditions reported in (3.78) and
(3.79), the weights are defined by the instances xk. On top of that, since some
of the αk are zeros due to the sparsity condition

∑N
k=1 αkyk = 0, only specific

data points xk contribute to define the hyperplane in (3.75) and they are called
support vectors.

It is clear from (3.80) and from (3.79) that the optimal hyperplane is defined
by the correlation distances xTk xl among data points. A nonlinear separation
between C+ and C− can be defined thanks to a generic function ϕ(x), which
maps the data points in feature space where they result linearly separable. The
classifier in (3.68) is reformulated as:

y(x) = sign(wTϕ(x) + b). (3.81)

The dual problem of (3.79) can be rewritten as:
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min
w,b

JD(α) = −1
2

N∑
k=1

ykylK(xk, xl)αkαl +
N∑
k=1

αk, (3.82)

such that
N∑
k=1

αkyk = 0

0 ≤ αk ≤ c, k = 1, ...N,

where K(xk, xl) = ϕ(xk)Tϕ(xl) is a kernel function the expresses a distance in
high-dimensional feature space. The advantage of the so-called Kernel trick is
to avoid the definition of feature map ϕ(.), since the final classifier will result in

y(x) = sign(αkykK(xk, x) + b), (3.83)

In the linear case, one might express the kernel function as correlation distance
K(xk, xl) = xTk xl (ϕ(xk) = xk), but other distance functions exist, such as:

K(xk, xl) = exp
(
−||xk − xl||

2

σ2

)
(3.84)

or

K(xk, xl) = (xTk xl + τ)p, (3.85)

where σ,τ and p are parameters of the kernel function and they are normally
defined hyperparameters of the SVMs classifier together with the regularization
variable (3.75) and (3.82). All hyperparameters are normally computed with
a nonconvex solution of an additional optimization problem (in contrast to
the convex solutions of the αk). Standard procedure is to compute these
hyperparameters using crossvalidation, e.g. 10− fold crossvalidation.

3.4.2 Least squares support vector machines

A further simplification of SVMs was proposed by Suykens et al. [242]. Starting
from the formulation in (3.75), one might convert the inequality condition in
an equality condition:
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Figure 3.11: The SVMs find the optimal hyperplane by maximizing the margin
between the two classes. On the left, the perfect linearly-separable case is
depicted and, on the right,the linearly-separable case with some tolerance
expressed by the slack variable.

min
w,b

Jp(w, e) = 1
2w

Tw + γ
1
2

N∑
k=1

e2
k, (3.86)

such that yk[wTxk + b] = 1− ek, k = 1, ...N

(3.87)

The variable ek behaves as like the slack variable ξk. However, the second term
of Jp(w, e) aims to minimize the squared errors, unlike (3.75).

L(w, b, e;α) = Jp(w, e)−
N∑
k=1

αk(yk[wTxk + b]− 1 + ek). (3.88)

By solving the conditions of optimality reported in (3.78), one obtains a system
of equations as formulation of the dual problem

[
0 yT

y Ω + γ−1I

] [
b
α

]
=
[

0
1v

]
, (3.89)

where α = [ α1 α2 ... αN ]T are the Langrange multipliers, y =
[ y1 y2 ... yN ]T , 1v = [ 1 1 ... 1 ]T and Ω = {Ωkl} = K(xk, xl) for
k, l = 1, ...N . The advantage of this formulation is that the α solution is
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obtained by solving the linear regression in (3.89). This simplification comes to
the price of a lack of sparsity, since the Lagrange multipliers are proportional to
the error, i.e. αk = γek. Consequently, all data points contribute to definition
of the hyperplane, which means that all instances are support vectors. Based on
the minimization of the squared errors in (3.86), this classifier has been named
least-squares support vector machines (LSSVMs).

3.4.3 Linear discriminant analysis

Similarly to LSSVMs, the linear discriminant analysis (LDA) aims to minimize
the squared error of misclassification, while maximizing the margin between the
two groups C+ C− [243]. Based on the following data projections:

f(x) = wTx+ b, (3.90)

the aim is to find that set of weights w that maximize the Rayleigh quotient,
defined as follows:

max
w,b

JFD(w, b) = wTΣBw
wTΣWw

, (3.91)

In layman terms, JFD(w, b) represents the ratio between the between class
variance and within class variance. The matrices ΣB and ΣW are covariance
matrices defined as follows:

ΣB = [µ(+) − µ(−)][µ(+) − µ(−)]T , (3.92)

ΣW = ΣW1 + ΣW2 = (3.93)

= E([x− µ(+)][x− µ(+)]T ) + E([x− µ(−)][x− µ(−)]T )

where µ(+) and µ(−) represent respectively the mean of C+ and C−. By taking
the ∂JFD(w)/∂w, the optimality condition leads to the generalized eigenvalue
problem:

ΣWw = ΣW
wTΣWw
wTΣBw

, (3.94)
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and, by using (3.92), one obtains that:

wFD = Σ−1
W [µ(+) − µ(−)]. (3.95)

The formulation in (3.95) shows the optimal projection hyperplane is to
maximize distance between the means of positive and the negative class and,
therefore, the margin. However, the variability of the data of each group should
be taken into account in order to minimize the error terms in the classification
process. The interested reader can find more detail about the links between
LDA and LS-SVMs in [243].

3.4.4 Fixed-size LS-SVM

In case of extremely large datasets, the computation of the LS-SVMs kernel on
the training set can become computationally expensive. Therefore, a low-rank
approximation of the kernel matrix in (3.89) can be performed by the Nyström
method with a selection of M columns. In case of LS-SVMs, this approximation
consists in a selection of support vector machines, which ultimately coincides
with a subsampling of the training set to a size M. Since the selection of M is
fixed or decided a-priori, this dataset reduction approach is known as fixed-size
LS-SVMs, as discussed in [60]. The selection of the data points or support
vectors can be random or an active selection scheme can be applied. Namely,
one can maximize the quadratic Renyi entropy (QRE) in a iterative fashion. As
first step, a training set is subsampled from the original dataset with a reduced
size M (M � N), where N is the number of instances in the original dataset.
For each iteration, one data point of the subset can be replaced with a data
point coming from the original dataset and the QRE can be computed as:

HR = − log
∫
p2(x)dx, (3.96)

where the p(x) is the probability density function (PDF) of the the considered
subset. The argument of the logarithm is normally estimated as

∫
p2(x)dx = 1

N2 1TNΩ1TN , (3.97)

where the Ω represents the kernel matrix of the fixed size training set. Therefore,
the inherent advantage is that the Ω based on the subset has dimension M ×M ,
which is a much easier matrix to invert in the solution of the dual problem
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Figure 3.12: Example of application of a fixed-size LS-SVM. The toy-example
shows that the classification between red squares and the blue circles could be
solved by using all the data points in the two spirals. However, one can select
fewer data points on two spirals (highlighted by the bigger markers) and would
still be able to perform a classification. The M markers is normally selected
with (3.96) to resemble the original dataset.

(3.89). The QRE is a common metric to describe the variety of selected data
points in the subset. The entropy maximization leads to a selection of data
points that is as representative as possible of the original dataset. The iterative
scheme is normally characterized by a steady increase of QRE until reaches a
plateau, when the procedure is normally stopped. This procedure is normally
meant to define the LS-SVMs hyperplane with those data points that fully
characterize the manifold without large computational costs. More details can
be found in [60],[243]. An illustrative examples of the fixed-size LS-SVMs is
reported in Figure 3.12. The toy-example shows that the classification between
red squares and the blue circles could be solved by using all the data points in
the two spirals (which have N data points). However, one can select a subset
of M data points (3.96) to resemble the original dataset and would be still be
able to perform a classification by means of LS-SVMs. The selected data points
are represented by bigger markers in Figure 3.12.
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3.4.5 Subspace Linear discriminant analysis

Similarly to the fixed-size LSSVMs, one might think to reduce the feature
size together with training size of the dataset. In this context, the bagging
process can be first used to randomly subsample the training set. It is normally
done to train multiple classifiers with each subsample before obtaining the
final classification function. If the bagging process is performed with a random
subsampling of the features to find the best feature subsets to separate the data,
one might refer to a subspace process [108]. The clear advantage is to span a
greater number of features and allow the model to tune for the best subset,
while different classifiers are trained similarly to the random forest. Since the
classifier chosen is LDA for the subspace approach, we will call it subspace
linear discriminant analysis in the context of this thesis.

3.4.6 Performance Metrics

In order to evaluate the performance of the developed classifiers, some metrics
should be defined and a precise set of performance indices was taken as reference
for studies reported in this thesis.

Confusion Matrix

The first step in evaluation of the classifier is the construction of the confusion
matrix, which is comprised of True Positives (TP), True Negatives (TN), False
Positives (FP) and False Negative (FN):

• TP and TN are data points correctly predicted as positive and negative
by the model, as shown by the diagonal in the matrix below

• FP and FN are data points incorrectly predicted as positive and negative
by the model, as shown by the antidiagonal in the matrix below

Predicted
True False

A
ct
ua

l True True False
Positive Negative

False False True
Positive Negative
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Accuracy Indices

Based on the confusion matrix, one may derive the following indices:

• Accuracy is the percentage of the correctly classified data points out of
the entire dataset:

Accuracy = TP + TN

TP + TN + FN + FP
. (3.98)

The complementary measure is the misclassification error, which is simply
computed as

E = 1−Accuracy. (3.99)

• Sensitivity is the fraction of positive samples classified by the model:

Sensitivity = TP

TP + FN
. (3.100)

• Specificity is the fraction of negative samples classified by the model:

Specificity = TN

TN + FP
. (3.101)

Cohen’s kappa

Originally developed as measure of agreement among different raters, Cohen’s
kappa (k) is employed to measure the agreement between the predicted labels
and the ground truth. This statistical measure is considered a more reliable
and more robust measure, especially in case of unbalanced datasets [167]. This
metric is normally derived as:

k = po − pe
1− pe

, (3.102)

where po is the observed agreement, which is the Accuracy in (3.98), and pe is
the expected agreement. The latter is normally computed as the sum of the
probabilities of occurrence of the positive class and the negative class in the
dataset, which means:

pe = TN ∗ FN
N

TN ∗ FP
N

+ TP ∗ FP
N

TP ∗ FN
N

. (3.103)
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Figure 3.13: An example of a Receiver Operating Characteristic curve (green
dash curve). The grey dot-dashed line is an example of a random classifier and
the blue square curve represents an example of perfect classifier.

The k metric is a value bounded between -1 and 1, where k = 1 represents a
perfect agreement and k = 0 is considered agreement by chance. The value
-1 is an agreement worse than the agreement expected by chance. Normally,
Cohen’s kappa in the range 0 < k ≤ 0.3 is a weak agreement, while the interval
0.3 < k ≤ 0.6 is a moderate association and k > 0.6 is considered a strong
agreement [167].

Receiver operating characteristic

The classification metrics strictly depends on the decision threshold present in
each classifier (e.g. the bias b in the SVMs). Therefore, one might think to move
this threshold to assess how the performance indices vary accordingly. The
Receiver operating characteristic (ROC) curve plots the Sensitivity in function
of the false positive rate (1 - Specificity), as reported by the green dashed curve
in Figure 3.13. Normally, the area under the ROC curve (AUC) is considered
a further measure of classification performance, since an AUC closer to 0.5
indicates a random classifier (grey dot-dash line in Figure 3.13) and an AUC
closer to 1 indicates a perfect classifier (black square in Figure 3.13).

3.5 Summary

The current chapter discussed in depth an extensive background of all the
different methods and extracted features to describe the dysmature EEG and



82 MATHEMATICAL BACKGROUND

HRV and assess their evolution or association with perinatal stress. Spectral
features were presented, taking into account the nonstationary nature of the
EEG and HRV signal. In order to assess the persistence of slow-waves and
discontinuity of EEG, entropy measure and multifractal features were reported.
Furthermore, a detailed view of the multivariate analysis was described both
for the assessment of signals interaction and for the description of the graph
topology of the time-series network. In addition, regression and classification
approaches were reported together with the associated performance metrics.
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Chapter 4

A brain-age model for
preterm infants based on
EEG connectivity

This chapter has been published as the two following articles:

1. Lavanga M., De Wel O., Caicedo A., Jansen K., Dereymaeker A.,
Naulaers G., Van Huffel S. (2018). "A brain-age model for preterm
infants based on functional connectivity." Physiological Measurement,
39(4), 044006;

2. Lavanga M., De Wel O., Caicedo A., Jansen K., Dereymaeker A.,
Naulaers G., Van Huffel S. (2017). "Monitoring Effective Connectivity in
the Preterm Brain: A Graph Approach to Study Maturation." Complexity,
2017(ID 9078541), 1–13.

Lavanga M. has developed the methodology, conducted the experiments and
has written the manuscript. Compared to the publications, minor textual and
notational changes have been implemented for better integration in this thesis.

The neonatal EEG is expected to develop with infant’s maturation. Specific
morphological traits such as discontinuity and slow-wave patterns are expected to
visually disappear. However, other features like asynchrony are also expected to
change with increasing age, but the variations in EEG dependencies are difficult
to monitor even for an expert clinical eye. This chapter introduces different
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algorithms to monitor brain development via EEG connectivity measures. As
first step, a variety of methods evaluates the functional and effective connectivity
in a full-scalp EEG dataset of infants with normal development outcome.
Subsequently, a set of network measures is derived to describe the topology
of the EEG network at different ages of the infants. At last, those features
are used to develop a Brain-Age model, which is a regression model based on
physiological biomarkers to describe the development of the infant.

4.1 Introduction

Premature birth normally leads to an early exposure to the extrauterine
environment, which is linked with the disruption of the normal brain
development. Due to the possible impact of prematurity on neurodevelopmental
outcome, a need for maturation charts to detect neural disorders in advance has
been discussed in the literature. In [89], Franke et al. used fMRI to describe
cerebral maturation, while other studies investigate the changes in the neonatal
EEG to describe infants’ development [191],[192].

The brain can be seen as a complex network of interacting regions and
hierarchical communications, which are constrained by the anatomy, but
not limited to it [94]. The neuronal clusters can actually work together
and communicate to perform a joint task beyond their structural locations.
The clinical literature [141] distinguishes this type of connectivity from the
anatomical one, which is often called structural. The consequence of this
functional infrastructure is the generation of complex electrophysiological
patterns, which are temporally correlated, by distant cerebral areas [260].
Those spatiotemporal patterns are dynamic and they change according to the
individual development trajectory [213].

The last trimester of gestation is a period of brain development, which
includes both anatomical rewiring [26] and electrophysiological modifications [8].
Different authors illustrated that the cortical regions undergo differentiation,
folding and gyrification with the premature infant’s development, while the
subcortical areas experience synaptogenesis and myelination as well as neural
pruning to establish thalamo-cortical connections or long distance cortical
connections [245], [72]. Based on MRI scans of preterm babies, Dubois et al.
[72] showed that the white matter volume and the inner cortical surface increases
with gestational age. Furthermore, the same authors [72], [113] demonstrated
that fractional anisotropy (FA) of the brain fiber bundles increases with post-
birth maturation, although the different connection pathways seem to develop
in an asynchronous way. According to Batalle et al. [26], FA is a measure of
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anatomical directivity that describes the connectivity strength among brain
regions together with the density and the percentage of connecting streamlines.
Besides thalamo-cortical connections and changes in anatomical connectivity,
the development of the infant brain during the perinatal period is characterized
by an increased relevance of cortico-cortical connections [134]. Based on this
anatomical findings, Huppi et al. [113] argued that diffusion tensor imaging
parameters, such as anisotropy, can be structural markers of network functional
organization [26]. Specifically, the slow wave burst-modulation pattern is due
to the cortical interactions, while subcortical patterns generate high-frequency
oscillations [270]. The latter type of connections are dominant up to 32 weeks
PMA, when the former starts prevailing [134]. Consequently, the anatomical
development drives a change in neuroelectrical waveforms and the temporal
correlations among brain regions is also expected to change since the functional
connectivity is related to the structural topology [94].

However, less is known about the correlations among neuroelectrical waveforms
and their maturation [241]. As discussed in details in Section 3.2 and in [90],
three types of brain connectivity are defined. The first one consists of the
description of the anatomical wiring, known as structural connectivity, and
usually described by imaging techniques. The second type is the functional
connectivity (FC), which delves into the statistical relationships among the
neural activities of different brain regions and provides insights into how the
brain manages its neuronal resources to engage any type of tasks. The third one
is called effective connectivity (EC) and is a special case of FC since it delves into
the directionality of those functional dependency and therefore the causality
of the coupling. Functional connectivity in developmental science received
increasing attention in the recent years [94]. Moreover, different tools to describe
functional connectivity became available in the last two decades, such as graph
theory (Section 3.2.4). Brain networks can be represented as a graph, where the
nodes are brain regions and the edges are the connection strengths. Moreover,
functional connectivity methods generate undirected graphs since the statistical
dependencies are represented without any directionality. On the contrary, the
effective connectivity methods are associated to directed graphs, since they
highlights which area or node causes the other (Section 3.2.4). In different
studies of the preterm infant brain [26], [185], the neural activity has been
measured using fMRI. Although this neuroimaging technique can investigate the
subcortical structures, it is an expensive method and it is not suitable to measure
effective connectivity due to fMRI low temporal resolution [229]. In contrast,
EEG is a suitable measurement for effective and functional connectivity and
has been employed in recent papers to study the brain connectivity maturation
[229], [146].

The neonatal EEG connectivity studies have three main drawbacks: the
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limited investigated maturation period (especially for EC), the absence of graph
theory metrics to investigate the connectivity changes and the investigation
of connectivity at sensors’ level. Studies about the long term development of
effective connectivity based on EEG in neonates were rarely performed [229].
In particular, there is a lack of research, that investigates the effective and
functional connectivity from birth until full-term age in premature infants.
Secondly, in case of perinatal development, the common approach is to describe
how the coupling of a selected pair of channels changes over age ([95],[168],
[177]). However, the combination of channels to study their interactions increases
exponentially with the number of channels. Unlike the application with fMRI
[26], graph indices, which describe the topological distribution of the network,
were seldom applied in premature EEG connectivity [185]. The third drawback
is the investigation of the connectivity at the sensors’ level, which can generate
spurious couplings due to volume conduction [104]. Some authors suggested
to retrieve sources to investigate the coupling. And yet, many doubts can be
raised on this approach for two reasons. The first one is the requirement of a
proper head-model for neonates to estimate the sources, which can turn into
an expensive and unneeded process, as already mentioned in previous studies
[168]. The second reason is that the sources of spontaneous EEG are close
to the surface of the scalp [99], therefore to the EEG recording sites, which
questions the necessity to retrieve the sources to avoid the computation of
spurious connectivity. Based on these considerations, FC can be described
via different pairwise EEG connectivity methods, such as Nolte’s imaginary
part of the coherence (ImCoh), which studies the lagged interactions among
signals [182]. Haufe [104] reports that ImCoh highlights the strong and true
interactions and disregards the weak interactions due to the volume conduction
(see Section 3.2.1). The ImCoh is not new to perinatal development studies,
such as [95]. However, previous research has not dealt with this method via
growth charts as [177], [168] or [132] proposed.

The main aim of the two studies reported in this chapter was to provide
a systematic comparison of different EEG-based functional and effective
connectivity approaches in order to track the maturation of the infant brain,
exploiting different network metrics (as in [26]). In particular, effective
connectivity was investigated by means of transfer entropy [227] and Granger
Causality [97]. Concerning functional connectivity, Imaginary Coherence
(ImCoh), Mean squared Coherence (MSC), Phase locking value and the Hilbert
- Schmidt dependence (HSD) [244] were employed in the investigation of the
healthy preterm cerebral networks. On the obtained directed and undirected
graphs, different networks metrics were computed to track their evolution
from 27 to 42 post-menstrual age (PMA) weeks. This network analysis was
complemented by a regression to predict the age of the patient. The ultimate
goal was to provide a brain-age prediction model based on graph topological
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indices, similarly to [89], [191].

4.2 Methods

4.2.1 Data

Different datasets were used. A dataset comprised of EEG signals was the
main part of the maturation study. In addition, a simulated dataset was also
employed in order to show how effective connectivity analysis performs in a
controlled case. In particular, the main objective of the simulation was to
illustrate the meaning of the most common graph indices used in the literature
in relation with the employed time series models.

Simulated data

The first experiment of this investigation consisted of a simulation based on a
linear Gaussian regression model (derived from [173]), expressed by the following
equations

x1,t = 0.9x1,t−1 + 0.9βx2,t−1 + 0.7βx3,t−1 + ξ1,t

x2,t = −0.9βx1,t−1 + 0.7βx3,t−1 + ξ2,t

x3,t = 0.8βx1,t−1 + 0.7βx2,t−1 + ξ3,t

x4,t = −0.25βx1,t−1 − 0.6x4,t−1 + ξ4,t

x5,t = 0.25βx1,t−1 + 0.9βx4,t−1 + ξ5,t

x6,t = 0.9βx4,t−1 + 0.9x5,t−1 − 0.7βx6,t−1 + ξ6,t

(4.1)

The parameter β is a scalar value that varies between 0 and 1 and it influences
the strength of the coupling among the xi,t variables. The ξi,t variables represent
white noise with unit variance. The associated graph is reported in Fig.4.1.
In order to give the reader a clear insight of the graph theory measures, the
objective of the simulation was twofold: firstly, we investigated the influence of
the strength of the coupling, provided by the parameter β, and show the effect
of the weakening of causality among the variables. Secondly, we investigated
the influence of the noise using different levels of signal to noise ratio (SNR),
which were obtained varying the variance of white noise in (4.1). In the latter
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objective, time series were simulated using the AR model (4.1) and the coupling
was estimated with the effective connectivity methods discussed in the following
paragraphs. We also studied the impact of filtering on the graph based metrics
by computing the scores from filtered signals, using a sampling frequency which
was set at 200 Hz and a band-pass filter between 1 and 80 Hz was applied on
the simulated data. The reason to investigate the impact of filtering is explained
in Section 4.2.3. The band-pass frequencies were obtained from [87].

Figure 4.1: The figure displays the graph associated to the model 4.1.

4.2.2 EEG Data

The second dataset comprised of 30 preterm neonates, who were recruited for
a larger study to assess brain development [144],[132] between 2012 and 2014
at the same neonatal intensive care unit (NICU), in the University Hospitals
Leuven, Belgium, with informed parental consent (Section 1.2). A group of
26 neonates presents normal neurodevelopment outcome at 2 years from the
birth, while 4 subjects are declared normal at 9 months (Bayley Scales of Infant
Development - II, mental and motor score > 85). EEG measurements for each
subject took place at least once during their stay at the unit and lasted at least 2
hours. The data were recorded with 9 electrodes (F1,F2,C3,C4,T3,T4,O1,O2 and
the reference Cz) according to the 10-20 international system monopolar set-up.
The sampling frequency for the data collection was 250 Hz (BRAIN RT, OSG
equipment, Mechelen, Belgium). A total number of 103 recordings was obtained
from the patients, whose post-menstrual age (PMA) ranges from 27 weeks to 42
weeks. The two sleep stages, namely quiet sleep (QS) and non-quiet sleep (NQS,
all other states), were annotated by two independent readers. Each recording
has at least one QS-NQS cycle. The average (standard deviation) duration for
the EEG recording, for the QS and NQS are respectively 263.69(129.39) min,
73.58(33.01) min and 190.11(106.90) min, while the amount of multichannel
EEG, QS and NQS data are respectively 452 h, 326 h, 126 h. Sleep states QS
and NQS are respectively 29.46(9.83)% and 70.54(9.83)% of the trace.
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The FC connectivity analysis focused on the entire EEG dataset, while the
EC analysis has originally been performed in a subset of patients. Specifically,
the directionality among signals was investigated on 25 preterm infants, who
presented good neurodevelopment outcome at 2 years from the birth. This
dataset resulted in 88 recordings ranging from postmenstrual age of 27 weeks
to 42 weeks.

4.2.3 Connectivity analysis

Functional connectivity methods

In order to assess the functional connectivity (FC), the most common linear and
nonlinear approaches to derive bidirectional dependencies, as reported in details
in section 3.2.1. The first two measures were magnitude squared coherence
(MSC) and imaginary part of the coherence (ImCoh). Similarly, the nonlinear
interrelationships and synchrony was assessed via the phase locking value (PLV)
and the Hilbert - Schimdt dependence (HSD). In this multivariate analysis, the
HSD analysis was performed by means of the ITE toolbox, Matlab (Mathworks,
Natick, Ma, USA) [244].

Effective connectivity methods

As anticipated in section 3.2.2, the literature about effective connectivity presents
different methods to assess coupling among time series, such as directed transfer
function (DTF), partial directed coherence or Granger causality test (GCT)
[35]. These approaches generate a type of coupling known as G-causality [14].
In case of multiple time series, the conditional multivariate Granger causality
(cMVGC) is normally estimated instead of the bivariate GCT [18]. According to
[14] and [224], both the DTF and cMVGC are based on the same multivariate
or Vector AutoRegressive (VAR) modeling. However, they can show different
aspects in the causality analysis. While the DTF estimates the reachability
from one channel to another (defined also as G-influentiability by [14]), both
PDC and cMVGC look into the direct active link between two channels, which
is defined as G-connectivity [14]. Those two methods investigate the same
connectivity model in two different domains, which are the frequency (PDC)
and time (cMVGC) domain. In this chapter, the results by cMVGC in its
AutoRegressive (AR) and information dynamics implementations, as described
in section 3.2.2, are reported.
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Graph theory indices

As illustrated in section 3.2.4, connectivity method generates an adjacency
matrix M ×M , defined as follows

Aij = Cxi↔xj , (4.2)

where Cxi↔xj is the general coupling intensity and M is the number of
processes. Functional connectivity methods generate a symmetric adjacency
matrix A, which describes a weighted undirected graph [43]. In contrast,
effective connectivity methods generate an asymmetric adjacency matrix
A, which describes a weighted directed graph. Those graphs are normally
treated as complete or full without applying a specific threshold (unlike binary
networks). Since the maximal number of couplings is M2 −M and, therefore,
increases exponentially, graph theory measures can be used to summarize brain
connectivity [234]. Although there is no minimal theoretical number of graph
nodes, 8 EEG channels can be considered quite limited for a graph analysis.
However, there are studies in the neural processing literature where graph theory
was applied on a limited number of time series in order to give a concise view of
a high-density (or complete) network [234], [83], in particular if the sources-level
is concerned.

A set of topological and spectral indices can be computed for an EC-directed
and FC-undirected networks (see Section 3.2.4). Among the topological indices,
the average characteristic path length, the clustering coefficient, the diameter
and the causal density were considered. Among the the spectral indices, the
spectral radius, the spectral gap and the algebraic connectivity were computed.
A quick overview of the considered indices is newly reported in Table 3.1.

4.2.4 Algorithmic pipeline and statistical analysis

Effective connectivity processing

According to different authors [19], [87], filtering could add spurious connectivity
in the effective connectivity analysis or make the estimation of the underlying
Granger causality VAR model unstable. Although a theoretical invariance of
causality estimation has been demonstrated under filtering, the G-causality
works in practice if, and only if, the data are stationary. The use of filtering as
mean to reach stationarity with filtering has already been investigated by [19].
However, three main reasons can undermine this approach. The first reason
is the increase of the estimated VAR model order due to the fitting of filtered
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Table 4.1: An overview of all graph metrics that have been used in the
multivariate analysis of this chapter.

Overview of graph indices
Path length Mean of the nodes’ shortest paths
Clustering coefficient Mean of the nodes’ triangles

intensity around each node
Diameter Maximum graph eccentricity
Causal density Sum of all significant couplings in A
Spectral radius λ1(A) : first eigenvalue

of adjacency matrix A
Spectral gap λ1(A)− λ2(A): the difference

between the first two eigenvalues
of matrix A

Algebraic connectivity λM−1(Lsym) or λM−1(L): the second
smallest eigenvalue

of the Laplacian matrix Lsym or L

process of theoretical infinite order with a numerical finite order. This could
lead to a poor, and not robust, parameter estimation or even unstable VAR
model, which is the second reason to avoid band-pass filtering. The last reason
is the ill-conditioning of the Toeplitz matrix of the autocorrelation sequence
Γk = cov(Ut,Ut−k), which is necessary for VAR model estimation. All the
related theoretical details are explained in [19]. The practical downsides of the
band-pass filtering are the dramatic increase of the VAR model order compared
to the unprocessed data or the increase of false positive detection of connectivity
links with both the GC [19] or the PDC [87]. In particular, the amount of
false detections increases with narrowing of the filtering frequency band or the
increase of the filter order. Interestingly, there is no distinction between FIR or
IIR filtering for both the authors. However, in both studies [19] and [87], it is
pointed out notch filtering and differentation (or high pass filtering at 1 Hz) as
methods to keep the VAR model order low and reduce the false detection, even
compared to unprocessed data. Those approaches help to achieve stationarity
or keep the VAR model order low for nearly-nonstationary processes like EEG.
In addition, the presence of trends or seasonality can add unit-roots to the time
series (poles on the unit circle or outside it in the complex plane), which violates
the hypothesis of covariance stationarity. In the presence of unit-roots, the
impulse response of the VAR model would be oscillatory or diverge to infinity.
Consequently, it is suggested to eliminate trends and seasonality by first order
differentiation or differentiation at various lags (notch-filtering). Theoretical and
numerical details of the different type of filtering are reported in [19] and [18].
Given the stated literature results, on the one hand, we decided to investigate
the impact of filtering on the simulated data and, on the other hand, we applied
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only notch filtering at 50 Hz and 100 Hz and differentiation on the EEG data
in order to reduce nonstationarities in the time series. However, the EEG
can be affected by muscle artifacts, which can spread out among the different
electrodes and bias the connectivity analysis. To mitigate this effect, we applied
canonical correlation analysis (CCA) to remove the artefacts caused by the
change in the EMG signals [269]. To investigate the effect of the CCA on the
analysis, we compared the output of the connectivity analysis in two scenarios:
the first one did not consider the usage of CCA; the second one applies CCA
and reconstructed the EEG removing the 3 sources with lowest autocorrelation.
In the first case, the authors segmented the EEG in 5 s windows and computed
the effective coupling with both listed methods. In the second scenario, CCA
was applied on 5 s EEG segments. However, before performing any connectivity
analysis, we recombined the segments in 30s intervals in order to increase the
rank of the reconstructed EEG matrix. This step was required since both GC
and TE request data that do not present collinearity (i.e. the time series matrix
cannot be rank-deficient, [18]). The window length was suggested as a further
step to keep time series stationarity [18]. For each recording, we computed the
adjacency connectivity matrix for EEG segments and we averaged over the QS
epochs and NQS epochs. This averaging step did not consider coupling values
that were not statistically significant. According to [173] and [18], the GC and
TE follow an asymptotic F-distribution, like R2 statistics. Therefore, an F-test
was implemented to test the significance of coupling among EEG channels and
all the couplings with p-value p < 0.05 were set to zero (see Section 3.2.3).

Functional connectivity processing

In case of functional connectivity, each EEG signal was resampled to 128 Hz
and low-pass filtered at 32 Hz. Each FC method was computed in 1 min
non-overlapping windows. MSC and ImCoh were computed with Welch’s
method using a 1 sec subwindow and the overlap was 70%. Those 2 parameters
were mainly chosen for a consistent and unbiased coherency estimation [39].
The MSC was then extracted as the average of |Cxy(f)|2 in the following
frequency bands: δ1 [0-2] Hz, δ2 [2-4] Hz, θ [4-8] Hz, α [8-16] Hz, β [16-32]
Hz. The ImCoh was computed as the maximum of I(Cxy(f)) in the same
frequency bands. This choice is a consequence of the fact that the ImCoh is
expected to be centered on one single frequency, as reported in [182]. In case of
the HSD and PLV , the signal was split in the specified frequency bands via
wavelet decomposition. The chosen basis was Daubechies 4, which is known
to be the best wavelet for epileptic EEG, but also for neonatal EEG since it is
characterized by transient waveforms. The coefficients of each scale were used
to compute the phase synchrony and the information entropy. In both types of
segmentation, the mean was subtracted and the window was discarded wherever
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the maximum value was above 3000 µV . It is interesting to notice how shorter
windows for HSD and PLV could have affected the significance of the coupling
estimation. In case of PLV, enough basic periods are required to assess the
oscillator interactions and the lowest frequency oscillations are just reported
by the empirical threshold defined by [31]. MSC, PLV and MI generate
symmetric adjacency matrices, while the latter one is antisymmetric in case
of ImCoh. In order to apply the undirected graph theory, we simply decided
to ignore the sign of the entries and take Aij = |AImCohij |. Consequently,
each method generates a 8× 8 matrix for each method and each window. In
order to guarantee the reliability of each connectivity method, we applied a
surrogate data test (see Section 3.2.3). Specifically, the data were shuffled via
the adjusted-amplitude Fourier transform algorithm (AAFT) in each epoch,
which rescales the signals with a Gaussian process and randomizes the phase
[228]. Subsequently, we did not only compute the coupling between two generic
channels X and Y, but also the coupling between X and 19 surrogates of Y in
each epoch. As suggested by Pereda et al. [200], the coupling was significant if
and only if it was higher than the surrogate-based 19 interaction intensities. The
number 19 guarantees an α = 0.05 significance level since Nsurr = 1

α − 1 = 19.
Each coupling value which did not pass the surrogate test was set to zero. The
AAFT surrogates were computed with the MATS toolbox [137]. Since the label
of sleep stage was known, the different FC adjacency matrices were averaged
throughout the QS and NQS periods, such that two adjacency matrices A were
obtained per recording.

Regression analysis: effective connectivity

After the F-test, the EC pipeline obtained a total of 352 = 88 ∗ 2 ∗ 2 coupling
directed graphs, where 88 is the total number of recordings, 2 is the employed
causality methods, 2 is the considered number of sleep states. On the average
matrices we computed the network indices described above, which results in a
tensor 88×7×4, where 7 is the number of graph features and 4 is the number of
combinations considering the number of connectivity methods and sleep states
involved (TE in QS, TE in NQS, GC in QS, GC in NQS). For each feature, we
evaluated the maturation trend in three distinctive age groups (≤ 31, ∈ (31−37),
≥ 37 PMA weeks) as median(IQR), where IQR is InterQuartile Range. Besides,
we computed the Pearson correlation coefficient between the variable age and
each single feature and its statistical significance were computed. Those results
were meant to give a general overview of the feature maturation trend for each
connectivity method, for each sleep state, with or without CCA preprocessing.
In addition, we computed an ordinary least squares (OLS) regression for each
single feature in case of GC during QS and the associated confidence interval at
95%, in order to give a visual representation of any network index prediction
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power. In particular, we split randomly the single graph index dataset 100
times in 70% training set and 30% testing set and we computed the prediction
error on the test set as root mean squared error,

√
MSE, as shown by [199].

Furthermore, each slice of the tensor (a matrix 88 × 7) was used to predict
the patient’s age at the moment of the recording with a multivariate linear
regression. Similarly to the single feature approach, we randomly split the
dataset 100 times, as in [199] and we assessed

√
MSE in the test set. At each

iteration, the R2 index and the F-test statistics were computed.

Regression analysis: functional connectivity

After surrogation, the next step in the FC pipeline was the computation of the
topological and spectral indices, whose output was arranged as a 103× 12× 5
tensor for each method and sleep state. The number of recordings was 103. We
obtained 12 network indices and we used 5 frequency bands. Due to the large
number of features, we decided to report only the path length as median(IQR),
where IQR is inter-quartile range, in three PMA groups (≤ 31 Weeks, ∈ (31−37)
Weeks, ≥ 37 Weeks) to give a general overview of the predictive power for
each method. Furthermore, the Pearson correlation coefficient between the
path length and PMA on the entire dataset has been reported. The topological
features from each FC method were used to develop a linear mixed-effect (LME)
model to predict the PMA in each sleep state. In the random-effects modeling,
the subject or patient ID label was considered as a grouping variable. Since
the topology features can be characterized by collinearity due to the similar
definitions of graph indices, we decided to apply a least absolute shrinkage
operator (LASSO) to select the features for the regression model (Section 3.3.3).
In particular, a LASSO algorithm was run 100 times on each dataset and only
features selected more than 40% of times were included in the final model. The
LME model with LASSO-filtered features was then estimated on 100 random
splits of the dataset. In each split, the model was tuned on 70% of data,
the training set, and tested on the remaining 30%, the test set. The model
performance has been assessed via the mean absolute error (MAE) on the test
set and the adjusted coefficient of determination R2

adj on the training set. The
last step was to develop a model independently from the type of FC method or
frequency band. Specifically, a subset of features with the highest predictive
power to track PMA have been selected in this way: each attribute was used
to predict age in a univariate LME fashion and ranked based on MAE. The
10 features with the lowest MAE were used to develop a final age regression
model. In this phase, the FC coupling intensities together with the network
indices were also used as candidate features. Eventually, the final model with
10 features was tested on 100 random splits of the dataset and evaluated using
R2
adj and MAE.
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4.3 Results

In the following paragraphs, the results obtained in both the simulated and the
real dataset are discussed. In particular, we will show how the network indices
behave in both examples, the simulated data and the EEG maturation dataset.
The last part summarizes the predictive power of those graph metrics to infer
the post-menstrual age of the subject.

4.3.1 Simulated data

Figure 4.2, Figure 4.2.b and Figure 4.2.c display the integration graph indices
for the AR model defined in (4.1), whose network is depicted in Figure 4.1. In
the original model (β = 1), the graph presents two distinct clusters, which are
loosely connected by the edges between node 1 and nodes 4 and 5. This two-hubs
structure is reflected by the first two panels in Figure 4.2. When the intra-cluster
connectivity is high (β = 1), the clustering coefficient reaches its highest level,
while the path length is at its lowest level. Those results are in line with a
rich-club or small world network [43]. However, when the coefficient β starts
decreasing, the clustering coefficient proportionally decreases, while the path
length increases. The spectral radius decreases with vanishing values of β, as
the clustering coefficient does. Figure 4.2.d, Figure 4.2.e and Figure 4.2.f display
the ratio between the network indices estimated from the simulated time series
via Transfer Entropy and the original measures (in particular, in the first panel,
CCTE
CCorig

, in the second one, lengthoriglengthTE
, in the third one, λTE

λorig
). Different noise

levels have been used. The results are quite straightforward for the clustering
coefficient and the spectral radius: the higher the signal-to-noise ratio, the
higher the values of two indices are and the closer they are to the original values
(Figure 4.2.d and Figure 4.2.f ). In the case of the path length, the absolute
value is decreasing with higher SNR. However, the estimated value becomes
similar to the original one for very low noise variance (Figure 4.2.e). Figure 4.2.d,
Figure 4.2.e and Figure 4.2.f show also the effect on band-pass filtering on the
graph indices estimation. The most remarkable results are related to the path
length and the clustering coefficient. The estimated clustering coefficient tend
to underestimate the original one, while the estimated path length tends to be
persistently higher than the original one. On the contrary, the ratio for the
spectral radius in case of filtering behaves similarly to the one obtained using
the raw data.
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a) b)

c) d)

e) f)

Figure 4.2: The figure shows the results for the simulation dataset. The first
three panels show how the graph indices behave for different level of coupling in
the model 4.1. The last three panels investigate how the transfer entropy can
estimate the network indices for different level of SNR. In particular, the figure
compares the two cases when the data is filtered and when the raw data is used.
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4.3.2 EEG data: Effective connectivity indices

Figure 4.3 shows graph metrics for the adjacency matrices obtained using the
EEG measurements and Granger causality in QS (GC in QS). Figure 4.3.a,
Figure 4.3.b, Figure 4.3.c and Figure 4.3.d show the scatter plots with the
fitted OLS regression model, while Figure 4.3.e and Figure 4.3.f display the
clustering coefficient and path length dynamics in three distinct age groups. If
Figure 4.3 gives a visual representation of the trends for the graph features,
Table 4.2 and Table 4.3 provide a complete overview for all coupling methods
(TE,GC) and all sleep states. Each single feature has a significant trend with
age, although the Pearson correlation coefficient ρ(%) increases when CCA is
used as a pre-processing step. Specifically, the trend for the clustering coefficient,
the spectral radius and the spectral gap is negative, while the path length is
increasing with age. This result is persistent in each method and each sleep state.
The connectivity weakening for GC in QS is also reported in Figure 4.4, which
shows the average connectivity graph for three distinct age groups. The three
panels show how the coupling among time series decreases by the reduction in
arrows width and the color shift from red to blue.

4.3.3 EEG data: Functional connectivity indices

Table 4.4 and 4.5 give a general overview of different functional connectivity
methods to describe the connectivity over age by means of the path length. The
different age groups in the two tables have respectively the following number
of recordings: 24, 62, 17. The first remarkable aspect is a stronger correlation
with PMA for ImCoh compared to other FC methods, in particular for the
frequency bands δ2, θ and α, together with k2

xy(θ, β) and HSD (θ, α). Secondly,
PLV, HSD (θ, α) and k2

xy(δ1, δ2, θ, α) show a negative correlation between path
length and PMA, while k2

xy(β) and ImCoh present a positive trend. Since
the path length is a measure of distance, a decrease of this topological index
relates with an increase of connectivity, while its increase is associated to a
lesser degree of interaction. For the ImCoh(θ), LME-regression chart with
the associated confidence intervals and data cloud of the path length and the
clustering coefficient have been reported in Figure 4.5. Each color in the plot
represents a different patient. The topographic distribution of the coupling value
for ImCoh(θ) is reported in Figure 4.7. Figure 4.6 shows different density indices
computed via MSC in β and θ bands. In particular, panel a shows posterior
density for k2

xy(β) during QS, while panel c shows the anterior density for k2
xy(θ)

for QS. The anterior density k2
xy(θ) increases with postnatal maturation, while

we found a negative trend of k2
xy(β) with postnatal maturation.
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Table 4.2: The main integration and spectral features in three discrete time
points. The table shows the indices for both sleep states (QS = quiet sleep,
NQS = non-quiet sleep) and they were computed on the Transfer Entropy
connectivity graph. The results are reported as median(IQR), where IQR
stands for InterQuartile Range. The symbol ρ stands for the Pearson correlation
coefficient, while # represents a significant correlation with p ≤ 0.01. The
values 10−3 or 10−2 mean the reported results are multiplied by a factor 10−3

or 10−2

Network indices - Transfer Entropy in three age groups
Median(IQR) - PMA weeks ≤ 31 ∈ (31− 37) ≥ 37 ρ(%)
Clustering coefficient
QS .025(.008) .021(.005) .017(.002) -53 #
NQS .025(.006) .020(.006) .018(.002) -49 #
Path length
QS 3.73(.30) 3.89(.22) 4.07(.10) 59 #
NQS 3.71(.20) 3.91(.25) 4.04(.14) 54 #
Spectral radius
QS .18(.07) .16(.05) .12(.01) -49 #
NQS .18(.05) .15(.04) .13(.02) -48 #
Spectral gap
QS .15(.09) .12(.04) .10(.02) -51 #
NQS .15(.06) .12(.04) .11(.02) -48 #

Network indices - Transfer Entropy - CCA
Median(IQR) ≤ 31 ∈ (31− 37) ≥ 37 ρ(%)
Clustering coefficient
QS(10−3) 9.82(6.1) 6.21(3.3) 4.98(0.9) -57 #
NQS(10−3) 9.13(3.5) 6.29(2.0) 5.90(1.0) -49 #
Path length
QS 4.70(.57) 5.11(.47) 5.32(.18) 64 #
NQS 4.73(.40) 5.09(.27) 5.16(.18) 52 #
Spectral radius
QS(10−2) 8.20(4.7) 4.68(3.1) 3.63(.6) -55 #
NQS(10−2) 6.94(2.8) 4.74(1.6) 4.30(.7) -48 #
Spectral gap
QS(10−2) 5.84(3.1) 3.93(2.0) 3.30(.6) -52 #
NQS(10−2) 5.84(3.1) 3.93(2.0) 3.30(.6) -49 #



RESULTS 101

Table 4.3: The main integration and spectral features in three discrete time
points. The table shows the indices for both sleep states (QS = quiet sleep,
NQS = non-quiet sleep) and they were computed on the Granger Causality
connectivity graph. The results are reported as median(IQR), where IQR
stands for InterQuartile Range. The symbol ρ stands for the Pearson correlation
coefficient, while # represents a significant correlation with p ≤ 0.01. The
values 10−3 or 10−2 mean the reported results are multiplied by a factor 10−3

or 10−2.

Network indices - Granger Causality
Median(IQR)- PMA weeks ≤ 31 ∈ (31− 37) ≥ 37 ρ(%)
Clustering coefficient
QS .024(.006) .019(.006) .015(.002) -56 #
NQS .024(.007) .019(.005) .016(.002) -51 #
Path length
QS 3.77(.20) 3.95(.25) 4.17(.13) 61 #
NQS 3.75(.33) 3.95(.27) 4.10(.14) 56 #
Spectral radius
QS .18(.06) .15(.04) .10(.02) -54 #
NQS .18(.05) .14(.03) .10(.01) -51 #
Spectral gap
QS .14(.06) .13(.04) .09(.02) -58 #
NQS .15(.05) .11(.03) .11(.01) -51 #

Network indices - Granger Causality - CCA
Median(IQR)- PMA weeks ≤ 31 ∈ (31− 37) ≥ 37 ρ(%)
Clustering coefficient
QS(10−3) 12.87(4.8) 9.34(3.2) 7.39(1.2) -68 #
NQS(10−3) 12.29(3.4) 9.08(2.1) 8.51(1.2) -61 #
Path length
QS 4.36(.37) 4.69(.33) 4.92(.16) 73 #
NQS 4.41(.28) 4.71(.21) 4.77(.14) 63 #
Spectral radius
QS(10−2) 9.52(3.5) 6.79(2.6) 5.28(.8) -68 #
NQS(10−2) 8.98(2.5) 6.50(1.5) 6.05(.9) -61 #
Spectral gap
QS(10−2) 7.28(2.4) 5.87(2.3) 4.91(1.1) -63 #
NQS(10−2) 6.91(3.0) 6.07(1.0) 5.35(1.4) -56 #
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a) b)

c) d)

e) f)

Figure 4.3: The figure shows the results for EEG data. The first four panels
show OLS regression between 4 main graph indices vs the age for GC in QS.
The grey area is the confidence interval at 95%. On the top of the panel, the
associated R2 and

√
MSE in PMA weeks on the test set. The last two panels

show the trend of the clustering coefficient and the path length in three distinct
age groups. The results are reported about GC in QS.
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Figure 4.4: The figure shows the average connectivity graph (GC for three
different age groups. The strength of the coupling among the electrodes is
decoded by the color (the closer to the red color, the higher the coupling) and by
the width of the arrow. The connectivity values have been normalized between
0 and 1 for the three groups together. The panels cleraly show the weakening
of the coupling among EEG channels with maturation. The consequence is the
increase of path length and the decrease of the clustering coefficient Figure 4.3.

4.3.4 Regression results

Table 4.6 reports the results for age prediction by means OLS regression and
effective connectivity features. All the models can predict the age of the infant
recording with a

√
MSE between 2 to 3 weeks and the CCA models always

outperform the model without CCA as a preprocessing step. Furthermore,
the explained variance (R2) is higher with the models that include CCA. It
is also interesting to notice that best prediction results are obtained with GC
during QS (

√
MSEsimple = 2.52 PMA weeks,

√
MSECCA = 2.10 PMA weeks).

Table 4.6 does not report the results for one single model estimation, but the
median and InterQuartile Range (IQR) of the evaluation parameters for 100
bootstrap iterations. In each single iteration, the model proved to be significant
as reported by the p-value column in the Table 4.6 (p < 0.01).

Table 4.7 reports the results for the prediction via a linear mixed-effects model
and FC network features. ImCoh clearly outperforms any other FC methods in
PMA prediction both in terms of MAE and R2

adj . Considering the frequency
bands, the θ band consistently outperforms the others in PMA prediction for
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a) b)

Figure 4.5: The figure shows the linear mixed-effect regression between the
clustering coefficient and the age (Panel a), and between path length and the
age for the ImCoh in θ bands (Panel b) during QS. Specifically, the black
continuous line represents the estimated regression line, while the dashed lines
are the confidence intervals. Each color in the plot represents a different patient.
In order to show the specific trend for a single patient, we highlighted the
result for a chosen infant in thicker red line. Above each panel, we reported the
Pearson correlation coefficient and the associated pvalue.

a) b)

Figure 4.6: The figure shows the linear mixed-effect regression between different
MSC density indices and the age. Panel a) displays the density in posterior
hemisphere in the β band during only QS, while panel b) shows the density
in anterior hemisphere in the θ band during QS. The black continuous line
represents the estimated regression line, while the dashed lines are the confidence
intervals. In this figure, we reported only the data cluster without highlighting
each patient. Above each panel, we reported the Pearson correlation coefficient
and the associated pvalue.
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Table 4.4: The table displays the path length for the different FC methods
during QS in the different age groups: PMA ≤ 31 Weeks, PMA ∈ (31 − 37)
Weeks, PMA ≥ 37 Weeks. Results are reported as median(IQR), where IQR
stands for interquartile range. In the last column, the Pearson correlations of
the path length with PMA is reported and the associated pvalue is reported. ∗∗
stands for p ≤ 0.01, ∗ stands for p ≤ 0.05, while n.s means p = not significant.
The values ∗103 means that reported results are divided by ∗103.

Path Length - QS
PMA ≤ 31 Weeks ∈ (31− 37) Weeks ≥ 37 Weeks ρ %
ImCoh(δ1) 14.54(5.32) 20.24(8.12) 24.81(16.75) 49.53%∗∗
ImCoh(δ2) 8.97(3.63) 13.42(5.84) 20.17(5.01) 75.48%∗∗
ImCoh(θ) 6.11(1.85) 9.72(5.4) 17.71(6.19) 74.78%∗∗
ImCoh(α) 5.53(1.72) 7.2(3.21) 11.01(3.53) 74.49%∗∗
ImCoh(β) 5.78(1.09) 6.03(1.31) 6.39(1.82) 17.63%n.s.

k2
xy(δ1) 6.18(1.54) 6.18(2.01) 5.53(2.09) −9.61%n.s.

k2
xy(δ2) 6.17(2.36) 6.19(2.1) 5.52(1.77) −18.89%n.s.

k2
xy(θ) 6.77(2.1) 6.67(1.92) 4.92(1.31) −44.85%∗∗
k2
xy(α) 7.52(2.15) 8.04(2.83) 7.08(2.7) −21.03%∗
k2
xy(β) 6.45(2.67) 8.45(4.01) 10.1(6.25) 48.49%∗∗

PLV (δ1) 3.86(1.78) 3.48(1.13) 3.66(1.35) −11.41%n.s.

PLV (δ2) 3.02(0.68) 3.22(0.92) 3.09(0.67) −9.91%n.s.

PLV (θ) 2.99(0.74) 3.17(0.8) 2.95(0.52) −9.51%n.s.

PLV (α) 3.37(1.3) 3.54(0.91) 3.31(0.51) −15.94%n.s.

PLV (β) 3.71(1.59) 4.13(1.05) 4.57(1.15) 19.97%∗

HSD(δ1) 154.57(65.05) 132.93(47.37) 130.55(68.01) −20.45%∗
HSD(δ2) 167.54(63.25) 155.04(55.88) 135.17(36.72) −37.45%∗∗
HSD(θ) 216.53(96.42) 172.87(52.74) 135.18(32.48) −56.62%∗∗
HSD(α) 237.61(78) 205.71(65.18) 182.09(31.04) −46.08%∗∗
HSD(β) 236.16(100.17) 268.16(79.4) 274.02(98.75) 14%n.s.

the ImCoh, while MSC sees the β band as the most informative one, PLV the
δ1 and δ2 band and HSD the θ and α band. These findings tend to be consistent
in both sleep states. Table 4.7 also displays the result with the best selected
features, which mainly come from ImCoh in θ and α bands. Consequently, the
prediction power is similarly to that of the ImCoh.

4.4 Discussion

In this chapter, we investigated recent approaches to describe EEG-based
functional and effective connectivity to track and assess brain maturation in
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Table 4.5: The table displays the path length for the different FC methods
during NQS in the different age groups: PMA ≤ 31 Weeks, PMA ∈ (31− 37)
Weeks, PMA ≥ 37 Weeks. Results are reported as median(IQR), where IQR
stands for interquartile range. In the last column, the Pearson correlations of
the path length with PMA is reported and the associated pvalue is reported. ∗∗
stands for p ≤ 0.01, ∗ stands for p ≤ 0.05, while n.s means p = not significant.
The values ∗103 means that reported results are divided by ∗103.

Path Length - NQS
PMA ≤ 31 Weeks ∈ (31− 37) Weeks ≥ 37 Weeks ρ %
ImCoh(δ1) 18.79(4.49) 21(6.11) 20.42(7.43) −2.8%n.s.

ImCoh(δ2) 10.88(2.53) 14.73(3.87) 15.14(3.54) 40.89%∗∗
ImCoh(θ) 7.55(2.01) 12.44(5.69) 14.83(3.42) 59.12%∗∗
ImCoh(α) 6.68(1.31) 9.7(2.79) 10.72(1.39) 68.83%∗∗
ImCoh(β) 6.5(1.04) 6.6(0.98) 6.51(0.8) 1.95%n.s.

k2
xy(δ1) 5.99(1.43) 5.82(1.7) 4.85(1.85) −28.8%∗∗
k2
xy(δ2) 6.18(2.49) 5.45(1.88) 5.68(1.36) −18.86%n.s.

k2
xy(θ) 8.05(2.64) 6.19(2.29) 5.21(1.04) −45.49%∗∗
k2
xy(α) 10.29(3.62) 9.12(3.4) 8.22(4.64) −24.77%∗
k2
xy(β) 7.45(2.22) 11.59(6.1) 14.44(6.98) 56.21%∗∗

PLV (δ1) 3.8(1.3) 4.01(1.22) 3.84(1.4) −1.98%n.s.

PLV (δ2) 3.3(0.7) 3(0.79) 3.23(0.66) −21.03%∗
PLV (θ) 3.25(0.91) 3.09(0.7) 2.97(0.56) −24.43%∗
PLV (α) 3.82(0.82) 3.74(0.99) 3.65(0.57) −20.84%∗
PLV (β) 4.17(1.09) 4.55(1.18) 4.99(1.38) 32.21%∗∗

HSD(δ1) 140.41(51.88) 137.28(38.59) 127.26(43.46) −15.78%n.s.

HSD(δ2) 165.8(44.65) 133.66(44.25) 133.97(41.04) −34.96%∗∗
HSD(θ) 195.53(76.71) 152.3(57.33) 131.62(32.15) −53.99%∗∗
HSD(α) 268.11(46.97) 220.82(69.59) 193.22(37.79) −44.76%∗∗
HSD(β) 266.93(77.01) 292.73(104.85) 355.53(170.72) 36.15%∗∗

premature infants. Firstly, different methodologies were employed to describe
the connectivity development; secondly, different graph features were used to
define a regression models to extrapolate age, known as brain-age models [89].

The current chapter illustrates the application of two well-known methods to
estimate directional coupling between processes, like GC and TE, as well as a
range of linear and nonlinear methods to investigate temporal correlations among
time series (ImCoh,MSC,PLV ,HSD). Based on the obtained connectivity
matrices, integration and spectral network indices were estimated for both
directed and undirected graphs. The EC graph features were firstly applied
on a simulated dataset to investigate how the network measures behaved in
a controlled case. Subsequently, the FC and EC graph features were used
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Figure 4.7: Topographic distribution for ImCoh(θ) in QS: PMA ≤ 31 Weeks,
PMA ∈ (31− 37) Weeks, PMA ≥ 37 Weeks.

Table 4.6: Multivariate regression model performances. The table shows the
error on the test set (Error), the R2 and the F-statistics (F -stat) and the p-value
obtained with the different connectivity methods in the different sleep states.
The results are reported as median(IQR), where IQR stands for InterQuartile
range over the 100 random splits of the dataset. The labels reported are TE =
transfer entropy, GC = Granger causality, QS = quiet sleep, NQS = non-quiet
sleep.

Multivariate regression performances
Median(IQR) Error(weeks) R2 F-stat P-value
Simple filtering
TE - QS 2.54(0.41) 0.57(0.07) 11.64(3.46) p < 0.01 ∗ 100
TE - NQS 2.88(0.39) 0.40(0.07) 6.23(1.72) p < 0.01 ∗ 100
GC - QS 2.52(0.37) 0.52(0.07) 10.01(2.64) p < 0.01 ∗ 100
GC - NQS 2.79(0.53) 0.44(0.07) 7.20(2.09) p < 0.01 ∗ 100
CCA
TE - QS 2.23(0.29) 0.63(0.06) 12.90(3.14) p < 0.01 ∗ 100
TE - NQS 2.54(0.51) 0.57(0.06) 10.36(2.66) p < 0.01 ∗ 100
GC - QS 2.10(0.38) 0.67(0.05) 15.96(3.64) p < 0.01 ∗ 100
GC - NQS 2.35(0.42) 0.63(0.04) 13.38(2.61) p < 0.01 ∗ 100

‘
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Table 4.7: The performance of the different linear mixed-effect models for the
investigated FC methods is displayed. The table reports the adjusted explained
variance R2

adj on the training set and the MAE on the test set as median(IQR),
where IQR stands for interquartile range. The results are reported for both
sleep states, QS and NQS. The last row reports the result with selection of the
best features via LASSO.
FC methods QS NQS

R2
Adj [.] MAE (WeeksP MA) R2

Adj [.] MAE (WeeksP MA)

ImCoh(δ1) 0.37(0.1) 2.06(0.38) 0.09(0.06) 2.62(0.45)
ImCoh(δ2) 0.72(0.09) 1.61(0.27) 0.26(0.07) 2.31(0.34)
ImCoh(θ) 0.81(0.08) 1.54(0.22) 0.62(0.06) 1.59(0.31)
ImCoh(α) 0.66(0.14) 1.7(0.3) 0.61(0.08) 1.54(0.27)
ImCoh(β) 0.49(0.09) 2.08(0.29) 0.39(0.08) 2.21(0.42)
k2

xy(δ1) 0.08(0.06) 2.64(0.36) 0.36(0.08) 2.07(0.39)
k2

xy(δ2) 0.2(0.07) 2.46(0.4) 0.26(0.09) 2.47(0.45)
k2

xy(θ) 0.38(0.08) 2.03(0.25) 0.39(0.1) 2.05(0.38)
k2

xy(α) 0.38(0.09) 2.14(0.39) 0.28(0.09) 2.35(0.34)
k2

xy(β) 0.41(0.12) 2.16(0.4) 0.47(0.08) 1.94(0.36)
PLV(δ1) 0.18(0.08) 2.47(0.36) 0.44(0.09) 1.96(0.36)
PLV(δ2) 0.27(0.07) 2.33(0.33) 0.32(0.11) 2.32(0.39)
PLV (θ) 0.24(0.07) 2.31(0.33) 0.23(0.09) 2.44(0.42)
PLV (α) 0.29(0.12) 2.26(0.36) 0.26(0.08) 2.4(0.35)
PLV (β) 0.15(0.07) 2.43(0.33) 0.34(0.14) 2.25(0.33)
HSD(δ1) 0.17(0.09) 2.66(0.37) 0.08(0.06) 2.67(0.36)
HSD(δ2) 0.54(0.1) 1.97(0.35) 0.26(0.07) 2.27(0.41)
HSD(θ) 0.59(0.07) 1.82(0.33) 0.51(0.05) 1.87(0.33)
HSD(α) 0.54(0.07) 1.92(0.34) 0.45(0.06) 1.96(0.34)
HSD(β) 0.28(0.08) 2.27(0.4) 0.28(0.09) 2.4(0.34)
Best features 0.8(0.11) 1.51(0.31) 0.65(0.07) 1.64(0.29)

to predict the age of the patient on a wide maturation period (from birth to
full-term age) in an EEG dataset of health preterm infants.

4.4.1 Simulated dataset

According to [43], graphs with high clustering coefficient and low path length
behave like a rich-club network, while graphs with low clustering coefficient and
high path length denote a random network, where the number of edges for each
node is normally distributed. Figure 4.1 portraits two club networks, where the
nodes are connected to each other with a short distance. This leads to a high
clustering coefficient and low path length when the coupling coefficient is equal
to 1. However, when β decreases, the intra-cluster connectivity weakens and
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the graph becomes more similar to a random network. This type of graph is
characterized by low clustering coefficient and high path length: indeed, the
nodes are less connected among each other in a more homogeneous network.
This result is also supported by the direct proportionality between spectral
radius and coupling coefficient. Another interesting point is related to the
filtering. Figure 4.2 illustrates clearly how the clustering coefficient and the
path length estimation can be highly affected by the filtering. Those results are
in line with the analysis by [19], which demonstrated that careless filtering can
add spurious connectivity in the time courses. In our simulation, the effect of
filtering weakens the intracluster connectivity (adding inter-cluster connectivity).
The net effect is a decrease in clustering coefficient and an increase in path length.
Therefore, filtering must be carefully applied when methods like GC and TE
are applied. In the context of this research, the notch filter and differentiation
were the only preprocessing steps before computing EEG effective connectivity.

4.4.2 EEG data

In the literature, a number of studies can be found to have assessed the brain
maturation in children and adolescents by graph theory [241],[94],[213] and a
few papers focused on preterm brain maturation by network metrics [185], [26].
The findings obtained in the reported studies confirm that the both effective and
functional connectivity change with the development of the premature brain.
Although Schumacher et al. [229] used a different method, they also concluded
that there is a change in effective connectivity mainly driven by postnatal
maturation (Figure 4.3). Regarding functional connectivity, Grieve and Meijer
have also shown an increase of the k2

xy(θ) in the frontal area (Figure 4.6 and
Table 4.4 and 4.5) and a decrease of k2

xy(β) in the occipital area (at least, during
gestational maturation) [99], [168]. Similarly, Gonzalez has shown a decrease in
ImCoh(δ2) [95].

In this analysis, we also observed a change in graph parameters that suggest
that the EEG-scalp network moved from a rich-club network to a more random
network, especially if the effective connectivity and the ImCoh are considered
(Figure 4.3 and 4.5, Table 4.3, 4.2, 4.4 and 4.5). The integration and spectral
indices decreased with age, while the path length increased. It might reflect a
segregation of nodes due to a higher graph distance as well as less intense triangle
patterns around the nodes themselves. Hub-networks have high clustering
coefficients since they have central club nodes, which are surrounded by triangle
patterns. On the contrary, a random network present nodes, which are connected
to any other node in the network with a weak coupling. The net effect is a
low clustering coefficient and high path length. The results of the multivariate
regression models further highlight the shift from a rich-club network at younger
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age to a more random one at full-term age. In case of effective connectivity,
the lowest

√
MSE on the test set is around 2.11 weeks (Table 4.6), which is

comparable to other studies [146], [190]. The negative trends for clustering
coefficients and positive trends for the path length features are consistent for
each effective connectivity method and each sleep state. Furthermore, both
models with and without CCA found the same trends, but source filtering
increased the prediction power of the model. It is possible that the EMG
artifacts disturbed the connectivity analysis and biased the prediction model
in the first considered scenario. In case of functional connectivity, the lowest
MAEs on the test set was 1.51 weeks for QS and 1.64 weeks for NQS with
combination of different features (Table 4.7). Nonetheless, the best regression
performance is normally obtained with ImCoh, which also presented a positive
trend for the path length and a negative trend for the clustering coefficient.

Additionally, this emergence of a normal-distributed network is also confirmed by
the decrease of the spectral gap, spectral radius and the algebraic connectivity.
The latter two indices emphasize how easily the graph can be clustered and a
negative trend would suggest the absence of modules or groups in the graph. On
the contrary, a negative trend of the former index should suggest an increase of
modularity, as shown by [77]. However, since the spectral gap is also inversely
proportional to the path length, its reduction just shows that the spectral
radius is less dominant with respect to the other eigenvalues [30] and it becomes
another measure of modularity like the other two spectral indices.

At first sight, the obtained results seem to be in contradiction with maturation
trends that can be found in children or adolescents, where a shift from random to
a rich-club network has been discovered. However, it should be taken in account
that, on one side, only 9 electrodes on the scalp were used, due to the small size
of the preterm brain and, on the other hand, there is a fast development of the
brain during this monitoring period with different trajectories for the different
cerebral regions [134]. This composite evolution is mainly driven by the different
disappearance timing of cortical subplate in the various brain areas [134]. In
particular, two main changes took place. The first one is the faster development
of the thalamo-cortical connections compared to the cortico-cortical ones [26].
Especially, the thalamo-cortical connections are dominant in the first part of the
preterm development (up to 31 PMA Weeks), in order to develop a substrate
for sensory-cortical activation. The cortico-cortical connections prevail in the
second part of the development (after 31 PMA Weeks), in order to shape
the folding of the different cortical areas [134], which causes the vanishing
discontinuity in the neonatal EEG [134], [270]. This could induce either a burst
de-synchronization or instantaneous synchronization, which both will diminish
the ImCoh and might explain why this feature specifically outperform the
other FC methods (Table 4.7). The second important change is the negative
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correlation between age and short-range cortico-cortical connections, as shown by
[26] via fMRI. Their study results showed that long distance connections develop
faster than the short ones. Furthermore, the development is characterized by
a strengthening of the former connections and weakening of the short-range
couplings [94]. Consequently, the EEG electrodes/nodes (which measure short-
range connectivity) tend to separate each other, with an increase of the path
length and a reduction of the clustering coefficient. This hypothesis is also
supported by the decrease in fronto-frontal and occipito-occipital functional
coupling measured by fMRI [26].

Therefore, the development of thalamo-cortical and long cortico-cortical
connections and the weakening and short-range wiring may trigger a separation
and segregation of the different brain regions. This segregation hypothesis
was also been debated in [241]. The author reports the different studies
which investigated a decrease of FC in general brain development. A possible
explanation of this connection reorganization is a shift from a more diffuse
cortical organization to a focalized one, probably driven by the cortical
folding. Similarly, Meijer also described a segregation on the cortex due to
the development of specialized tasks associated to the different brain areas,
which also finds support in the decrease of the ImCoh and in the hypothesis
that sources are on the cerebral cortex of the infant [168]. This result can be
further confirmed by the decrease of connectivity in k2

xy(β) (Figure 4.6). This
interpretation can be contradicted by positive trends of MSC, PLV and HSD
in the other bands. A possible explanation is that k2

xy = |cxy|2, which contains
the real part of the coherence, and the ImCoh have different information. Grieve
argued that the lower k2

xy(θ) in preterm babies is a sign of higher reactivity
to sensory inputs during sleep [99]. An increase in MSC and HSD in that
band could mean a decrease in reactivity (higher instantaneous interaction),
but a lesser degree of lagged interaction with a lower ImCoh. This opposite
trend between the two indices was also reported by Gonzalez [95], who argued
that stimuli and intervention in the postnatal maturation could influence those
trends. Whether this hypothesis is true, it should be tested with a proper study.
However, Myers [177] has already shown that the skin-to-skin contact (which is
a tactile stimulus) drives a sharper decrease rate in the MSC with postnatal
maturation. This approach could be extended to ImCoh in future research.

It is important to point out that this segregation can be emphasized by the
fact that there are a few electrodes on infant scalp. However, a study with
high-density EEG on preterm infants [185] found an increased modularity on
the scalp EEG network and a reduced clustering coefficient in the postcentral
network, while the clustering coefficient increases in the precentral network.
This result could confirm the segregation or the more local integration of the
brain network due to the pruning of short-range connections, as also shown by
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[82] in the comparison between adults and children.

4.5 Summary

This chapter provides new functional and effective EEG-based brain connectivity
methods for post-menstrual age estimation in healthy premature neonates. The
main novelty lies on the extensive usage of graph features to describe EEG
interactions, as well as, the comparison of multiple regression models to quantify
the predictive power of the different connectivity methods. In particular, the
clustering coefficient decreased with maturation, while the path length increased.
This perspective suggests that the EEG graph shifted from a small-world network
to a random network. This apparent nodes’ segregation can be a consequence of
the thalamo-cortical connections development and the strengthening of the long-
range cortical connections. Those hypothesis are confirmed by the regression
results. In case of effective connectivity, the lowest age prediction MSE was
2.11 PMA weeks and was obtained with GC in QS. In case of FC, ImCoh
outperforms the other methods to predict the age of the patient and the best
regression performance parameters were were MAE = 1.51 weeks and R2

adj

= 0.80. This result could be explained by a more diffused functional architecture
to perform different tasks on the cortex.



Chapter 5

A multifractal framework for
quiet sleep detection and the
estimation of age

This chapter has partially been published as Lavanga M., De Wel O., Caicedo
A., Heremans E., Jansen K., Dereymaeker A., Naulaers G., Van Huffel S.
(2017). " Automatic quiet sleep detection based on multifractality in preterm
neonates: Effects of maturation." Proceedings of the 39th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society (EMBC),
EMBS, (pp. 2010–2013). Lavanga M. has developed the methodology, conducted
the experiments and has written the manuscript. Compared to the publication,
the text has been expanded to report the assessment of brain maturation by
means of the multifractal framework.

So far, two age-prediction models have been reported for premature infants based
on the EEGs interdependence, normally referred to as Brain-Age models. This
chapter presents the first model based on a single-channel or univariate analysis
of the EEG, which can ideally predict the maturation of the infants with a set
of reduced electrodes. The methodology presented here uses the multifractality
framework, which investigates the changes in fractality of the different scales
of the EEG. In particular, the variations in regularity and multifractal EEG
properties in both development and in different sleep stages will be reported. The
first part of the chapter is dedicated to the outline of a quiet sleep classifier based
on multifractality and fixed-size LS-SVM. The second part is the description of
a regression model to predict the age of the infants based on the multifractal
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features. The study reported in this chapter led to a publication for the part
concerning the sleep staging [144], while the maturation model is based on
unpublished results.

5.1 Introduction

Assessment of brain maturation and sleep-wake ciclicity by means of EEG
analysis has become standard clinical practice [198], [17]. However, the
vast amount of EEG data that are normally collected in neonatal intensive
care units (NICUs) has made manual sleep scoring or visual assessment of
brain dysmaturity extremely time consuming. Due to advances in biomedical
signal processing, automatic neonatal EEG monitoring became a viable option.
Different algorithms to track sleep stages by means of linear and nonlinear EEG
features have been published [208]. These methods tend to rely on the fact that
quiet or NREM sleep (QS) is characterized by a discontinuous tracing, while the
active or REM sleep exhibits a more continuous tracing. Similarly, it is possible
to quantify the level of infant’s development by tracking the EEG discontinuity
or other electrophysiological changes. Based on different EEG-derived features,
different authors designed regression models to automatically estimate the age
of the infant [191],[192],[149],[65].

Among nonlinear features, fractal analysis received an increased interest to
discriminate sleep stages or describe the neurodevelopment of an infant, because
it can describe the morphology and the complexity of the EEG signals [3]. In
particular, Accardo et al. showed that the fractal dimension decreases during the
slow-wave sleep of full-term newborns, while it reaches its maximum value when
the subject is awake [3]. O’Toole et al. showed that the fractal dimension of the
full-channel EEG is expected to decrease with increasing age [192] and Hartley
et al. investigated long-term range correlations of the EEG activity in the first
days of life in premature infants [103]. In parallel, other studies showed that
entropy of the EEG (even at different scales) increases with the development of
infant [271], [65], which nicely complements the decrease of the regularity shown
by fractal measures (see Section 3.1.2 and Section 3.1.3). It is important to stress
that the measurement of the fractal dimension investigates only self-similarity
or the global scaling behavior (long-term persistance), which assumes that the
signal is monofractal. However, Popivanov et al. [211] showed that the EEG
presents different local scaling behavior, known as multifractality. The fact that
the fractal dimension is changing through the different sleep stages highlights
the higher complexity of EEG signals compared to a self-similar process like the
Brownian motion (Section 3.1.2). If we consider that the neonatal EEG in the
premature infant is in constant development, the intertwined nature of sleep and
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development can not only affect how the EEG differs among sleep stages, but it
can also show a structure of EEG development which is not trivial and might
go beyond the simple decrease of discontinuity. If sleep is taken into account,
the duality between the two common behavioral states (quiet and active sleep)
evolves during development (see Figure 2.3). Below 31 weeks postmenstrual age
(31 w PMA) the different sleep stages can not be distinguished, while at 32 to 36
weeks there is a maximal separation between the 2 sleep states. After 37 weeks,
different sleep stages start flourishing in the EEG signal with the first seeds
of Tracé Alternant, which is fully present at full-term age (see section 2.2.2).
If the development is considered, the evolution of EEG is characterized by
emergence of different rhythms, which might consist in burst overlapped with
higher frequency information (brushes with α frequency or temporal sawtooths),
or activity localized in specific area (such as the encoches frontales).

Therefore, one might expect the fractal properties of the signal to differ among
sleep stages, to change with age and to evolve differently according to the
sleep state. The univariate analysis in this chapter exploits multifractality of
neonatal EEG for automatic quiet sleep detection in preterm babies and the
assessment of the neurodevelopment of the infant. It also describes the impact
of maturation on the performance of this sleep stage classifier and the different
development trends of the EEG according to sleep state.

5.1.1 Dataset

Twenty-five preterm neonates, with normal developmental outcome at 2 years,
were recruited at the neonatal intensive care unit (NICU) in the University
Hospitals Leuven. The patients have a PMA ranging from 27 to 42 weeks
and they represent a subset of the dataset in Chapter 4 and Section 1.2. For
each subject, eight EEG signals were recorded according to the restricted 10-
20 international system (F1,F2,C3,C4,T3,T4,O1,O2) with the electrode Cz as
reference. The measurements were performed at least twice during their stay at
the unit (at different PMA) and lasted at least 2 hours, producing a dataset of
88 recorded EEGs. The monopolar EEG signals were recorded at a sampling
frequency of 250 or 500 Hz. Each channel was filtered using a band-pass filter
with a band-pass between 1-20 Hz and subsequently they were downsampled to
128 Hz for uniformity in the analysis. Clinicians manually detected the quiet
sleep (QS) and non-quiet sleep epochs (NQS) in the polygraphs, which is required
to develop a supervised automated hypnogram. This study mainly investigated
QS detection, because the awake states are difficult to discriminate from the
active sleep periods at very young age. For this reason, only QS/NQS stages
will be referred to in the remaining sections. Figure 5.1 shows a representative
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segment for QS and NQS epochs from a recording of a prematurely born neonate
at 42w PMA.
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Figure 5.1: Example of EEG signal during QS and NQS epoch (prematurely
born neonate at 42w PMA).

5.1.2 Multifractal features and classical EEG features

A thorough description of the multifractal formalism has been reported in
section 3.1.3. The main hypothesis of this study are that the multifractality
features c1, c2, c3 and ∆h are able to discriminate QS epochs from NQS periods
in neonatal EEG and they can describe the evolution of EEG discontinuity and
track infants’ maturation.

To evaluate whether the first hypothesis is correct, we compared their
classification power with the features traditionally used in the literature for this
task, as described in [208]. In particular, the power in the main frequency bands,
the spectral edge frequency, as well as the spectral moment and the spectral
entropy were selected for this subset. Furthermore, Shannon amplitude entropy
and fractal dimension (according to Katz’s algorithm) were also computed.
For each recording, all the mentioned features were computed for 30 s non-
overlapping windows in each channel. Each window was labeled as QS or NQS
according to the clinicians’ labelling. The multifractal features were computed
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using the Wavelet p-Leader and Bootstrap based MultiFractal analysis (PLBMF)
MATLAB toolbox, described in [266]. This toolbox can be downloaded from
https://www.irit.fr/~Herwig.Wendt/software.html. The feature c1 is also
normally referred to as the main Hurst exponent of the signal Hexp.

In order to test the second hypothesis, we developed regression models to
estimate the age of the patients based on the same multifractal features derived to
discriminate sleep stages. Since the age-model aims to predict the postmenstrual
age associated to each recording, the median of each feature was derived for the
windows associated to quiet sleep and non-quiet sleep in order to obtain only
two data point for each recording (grand-averaging or grand-median process).

5.1.3 Classification approach

A feature matrix X ∈ RN×d, where N = 102209 and d = 112, was produced for
the complete dataset. The dimensions of d include 4 multifractal measurements,
9 spectral features and 1 monofractal dimension for each one of the 8 EEG
channels (d = 14 ∗ 8 = 112). In addition, each row was associated to a
classification vector Y ∈ RN×1 with 1 for QS and -1 for NQS. In order to
develop a supervised model, least-squares SVMs (LS-SVM) were chosen as
a suitable classification method to discriminate QS epochs, as described in
[242] and Section 3.4.2. To study the maturational effect on QS detection, the
dataset X was first split into three groups according to the infant’s PMA. The
first group contains all data points that belong to recordings from neonates
up to 31 weeks PMA (N = 11541). The second one contains all data points
from neonates between 31 and 37 weeks PMA (N = 57053). The remaining
dataset contains all recordings of neonates beyond 37 weeks PMA (N = 33615).
Despite the splitting, the number of data points is extremely large to train
and tune the classification model. In order to reduce the size of the dataset
for the training of the classifiers, we used a modified approach to a fixed-size
LS-SVM, where a training set with a reduced size M (M � N) is selected from
the available data. In fixed-sized LS-SVM these training points are selected
with an iterative process that maximizes the quadratic Renyi entropy. Further
details can be found in Section 3.4.4. However, according to Varon et al. [253],
it is possible to choose a reduced size dataset as centroids of M clusters in
the original data cloud, which are defined with the k-medoids method. In this
way, a dataset with a high entropy can be provided as initial guess for this
iterative process [253]. Due to the fact that maximizing the Renyi entropy
might lead to the selection of outliers, we reduced the dataset with k-medoids
clustering without applying the iterative entropy process, in contrast to [253].
QS classifiers were implemented for the different age groups, as well as for
different sets of input features. Specifically, Xkatz ∈ RN×8, Xc1,c2,c3 ∈ RN×24,

https://www.irit.fr/~Herwig.Wendt/software.html
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X∆h ∈ RN×8, Xspectral ∈ RN×72, Xc2,∆h ∈ RN×16, Xc2,c1,c3,∆h,spec ∈ RN×104,
Xc2,c1,c3,spec ∈ RN×96, Xall ∈ RN×112 represent the different set of input
features used to train the classifiers. The training set was reduced to size
M = 1500, using the k-medoids method explained before, and the model was
tested on the remaining data points for each age group (Ntest,≤31w = 10041,
Ntest,∈(31−37)w = 55553, Ntest,≥37w = 32115). The LS-SVM model was tuned
with a 10-fold crossvalidation on the training set. The classifiers’ performance
was measured as area under the curve (AUC) of the ROC curve.

5.1.4 Regression model

After the grand-median process, the feature matrix was shrunk to the Xmat ∈
RP×d, where P = 88 and d = 32. The dimension P represents the total number
of recordings in the dataset, while d is the total number of multifractal features.
Each set c1,c2,c3 and ∆h is normally multiplied by the number of channels
(4 ∗ 8 = 32). The predictive power of the different sets of features were tested
with a linear mixed-effect model,as reported in section 3.3.2. For each type
of multifractal feature, a multivariate regression model with a random split of
the data in 70%/30% of train/test set based on the patient label and for 10
iterations. The random effect was represented by the patient ID as grouping
variable, while the fixed effects were represented by the same feature for each
channel (8 indipendent variables). In order to test the global predictive power
of all features, the total set of 32 features were considered in the regression
modeling. The model was tuned on 10 random split of the data in 70%/30%
of train/test set. For each iteration, a feature selection was applied via the
least absolute shrinkage and selection operator (LASSO, see Section 3.3.3). The
performances were then assessed as mean absolute error MAE on the test set,
as well as explained variance R2 both on train and test set (R2

train, R2
test). See

section 3.3.1 for more details. The results were reported as median(IQR).

5.2 Results

Figure 5.2 depicts the median and the 25 - 75 percentiles for c2 in QS epochs
(dashed line) and NQS ones (continuous line) for the group with the youngest
neonates (left panel) and the group with the oldest neonates (right panel). The
x-axis in the figures represent each of the EEG channels. The right panel shows
that the parameter c2 discriminates the sleep epochs for the oldest patients (Age
≥ 37w PMA) in the channels [C3, C4, O1, O2], while the left one does not show
any discriminative power from c2 (Age ≤ 31w PMA). In Figure 5.3.a an example
of SS for NQS (diamonds) and QS (stars) segments in a recording (prematurely
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a) b)

Figure 5.2: Median and 25-75 percentile for the c2 values in QS (dashed line)
and NQS (continuous line) epochs. On the left panel, the values from the
dataset with the youngest neonates. On the right panel, the values from the
dataset with the oldest neonates.

a) b)

Figure 5.3: The left panel shows an example of a mean singularity spectrum
in QS epochs (stars) and NQS epochs (diamonds) for one specific recording
(prematurely born neonate at 42w PMA). The right panel shows the ROC curve
for LS-SVM classifiers, using Xc2,∆H as feature set, in the three different age
groups. The continuous line represents the ROC curve for all recordings in
the youngest group, the dotted line represents the ROC for all recordings in
the middle age group, while the dashed line represents the ROC curve for all
recordings in the oldest group.
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born neonate at 42w PMA) are shown. The latter is wider than the former,
leading to the hypothesis that QS has a greater number of singularities, i.e. the
QS epochs are more multifractal than the NQS ones. Table 5.1 shows the AUC
for different LS-SVM classifiers for the different feature sets in the different
age groups. Although the spectral features always outperform the fractality
measures, it can be seen that the performance of the latter increases with age,
especially for the Xc1,c2,c3 feature set. This maturation effect is also shown
in Figure 5.3.b, which reports the ROC curves for different age groups using
Xc2,∆h as feature set. At the youngest age, the classifier exhibits the lowest
performance. Beyond 31w PMA, the AUC dramatically increases reaching
its maximum at full-term age. It is interesting to notice that all performance
results were obtained with a test set which was at least ten times bigger than
the training set (1500 vs 10041, 1500 vs 55553, 1500 vs 32115). In addition, the
EEG data were not manually preselected to compute the features.

Figure 5.4 and Table 5.2 show the change of the multifractal parameters
according to the maturation of the infant. Figure 5.4 respectively reports
the results for NQS and QS on the left column and the right column, while the
Table 5.2 respectively shows the results on the upper half and the bottom
half. The figure displays the current set of feature: the Hurst exponent
for T3, the c2 and c3 for the same channel and the difference ∆H for the
channel Fp1 (Hexp,T3 ,c2,T3 ,c3,T3 and ∆HFp1). All the fractal features show a
significant correlation with age: both Hexp,T3 and ∆HFp1 decrease with age,
while the parameters c2,T3 ,c3,T3 increase with maturation. However, the Pearson
correlation ρxy shows stronger correlation during NQS (left column) than QS.
Especially, the parameters c2,T3 ,c3,T3 have respectively ρxy equal to 83% and

Table 5.1: The AUCs for the different LS-SVM classifiers. The rows represent
the different input feature sets, while the columns represent the different age
groups.

AUC for different classifiers
Age (PMA w) ≤ 31 ∈ (31− 37) ≥ 37
XKatz .63 .69 .70
Xc1,c2,c3 .70 .82 .88
X∆h .67 .78 .79
Xspectral .83 .93 .91
Xc2,∆h .63 .79 .82
Xc2,c1,c3,∆h,spec .83 .94 .93
Xc2,c1,c3,spec .84 .93 .93
Xall .82 .94 .92
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Table 5.2: The performance of the different linear mixed-effect models for each
multifractal features set is reported for both NQS (upper half) and QS (bottom
half). The table reports the adjusted explained variance R2

ord on the training set,
the coefficient R2

test on the test set and the MAE on the test set as median(IQR),
where IQR stands for interquartile range. The first four models are multivariate
regression model with the same feature for each channel. The last row reports
the result of the model based with selected features via LASSO, reported in
Table 5.3.

NQS
R2
Ord MAE R2

test

Hexp 0.52(0.07) 1.6(0.22) 0.53(0.15)
c2 0.72(0.09) 1.41(0.28) 0.68(0.09)
c3 0.64(0.05) 1.93(0.18) 0.57(0.09)
∆H 0.75(0.08) 1.52(0.28) 0.68(0.12)
All 0.83(0.08) 1.38(0.23) 0.69(0.18)
QS
Hexp 0.52(0.09) 1.72(0.31) 0.51(0.11)
c2 0.23(0.14) 2.61(0.48) 0.19(0.18)
c3 0.63(0.1) 2.3(0.4) 0.39(0.16)
∆H 0.61(0.06) 1.99(0.61) 0.39(0.26)
All 0.78(0.07) 1.96(0.49) 0.42(0.25)

Table 5.3: The selected features of the regression models in the last rows of
the two blocks of Table 5.2. The features reported are : the Hurst exponent,
the parameters c2 and c3 for the width and the asymmetry of D(h) and the
difference between minimal and maximal Hurst exponents (Hexp, c2, c3 and
∆HFp1).

Features
All - NQS Hexp,O1 ,c2,T3 , c3,T3 , ∆HFp1 ,∆HO1

All - QS Hexp,T4 ,c3,T3 ,∆HFp1 ,∆HO1
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72% in NQS and equal to 42% and 67% in QS. This difference in correlation
is mirrored in the regression results reported in Table 5.2. The NQS state
have better performance in terms of R2 and MAE, but for Hexp. Indeed, the
results in terms of the main Hurst exponent are comparable between two states,
while c2 shows a significant plunge in performance (MAENQS = 1.41 wks
vs MAEQS = 2.61 wks). Overall, the best performance in age prediction is
reached when all features are pooled together, but QS consistently underperform
compared to NQS (MAENQS = 1.38 wks vsMAEQS = 1.96 wks). The features
selected at least 50% of the iterations by LASSO are reported in Table 5.3 for
both behavioral state.

5.3 Discussion

Multifractality seems able to discriminate the QS from the NQS. Although
the most known spectral features outperform the multifractal parameters, it
should be taken into account that the number of spectral features (d = 72)
is higher than the number of multifractal moments (d = 24) or the Hurst
differences (d = 8). However, if the multifractal features are combined with
the spectral ones, there is an increase in AUC. Interestingly enough, a marked
influence of the age was observed in the performance of the classifiers using the
multifractal features, especially when using the input feature set Xc2,∆h. The
mentioned input set contains features that are related to the width of the SS,
which represents the degree of multifractality of the signal (the wider the SS,
the more multifractal the signal is). This result indicates that the separation
between NQS epochs and the QS epochs based on multifractality in neonatal
EEG is more apparent in the oldest group. A possible explanation is that the
discontinuous trace is present both in QS and NQS epochs in the youngest
premature neonates, while the duality of the two states is well defined above 31
weeks PMA [8]. At full-term age, the trace-alternant replaces QS. These results
are in agreement with the clear pattern of fractal dimension changes throughout
sleep stages in full-term neonates reported in [3]. Furthermore, Piryatinska [208]
showed that the features that better discriminate the sleep stages in preterm
neonates are different from the ones in the full-term ones. Unlike Accardo
[3] and Piryantiska [208], we observed a wider number of Hurst exponents or
singularities for QS, which could indicate that the EEG signals are more complex
or, at least, characterized by more fractalities or local singularities during QS.
However, in the youngest group recordings, the NQS has approximately the
same amount of Hurst exponents, as during QS, and they can be regarded as
equally complex.

The maturation charts in Figure 5.4 also confirm that there are more local
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a) b)

c) d)

e) f)

g) h)

Figure 5.4: Results for the linear-mixed effect regression that models the
relationship between EEG multifractal features and the post-menstrual age.
Specifically, the Hurst exponent for T3, the c2 and c3 for the same channel
and the difference ∆H for the channel Fp1 (Hexp,T3 ,c2,T3 ,c3,T3 and ∆HFp1) are
displayed. The left column reports the result for the non-quiet sleep (NQS),
while the right column reports the result for the quiet sleep (QS) epoch. The
symbol ρ is the correlation coefficient of the regression and pvalue represents
the significance of the correlation.
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singularities during QS, especially throughout the development. The parameter
c2 has very similar median value in both states below 30 weeks PMA, but the
reduction of the singularity spectrum width is faster during NQS than QS.
The net effect is not simply an ability to discriminate sleep states from 30
weeks onward, but the prediction of brain maturation has higher performance
during NQS (MAENQS = 1.38 wks vs MAEQS = 1.96 wks, see Table 5.2).
Similarly to c2, the other two cp parameters do not only show slower changes
with increasing age (correlation ρNQS = −69% vs ρQS = −61% in case Hexp

and ρNQS = 73% vs ρQS = 67% in case of c3), but the y-axis confirms the
amplitude of all the three cp parameters of the singularity remains higher in QS
throughout the development. Those results are complementary to the studies of
[65] and [271], that shows a general increase of entropy and the complexity in
the neonatal EEG with development and a sustained higher value of complexity
during QS with maturation. As reported in Section 3.1.2 and Section 3.1.3, a
dysmature EEG is a process which have both stochastic and fractal properties.
Based on our findings and the findings of De Wel et al. [65], an increase of
complexity and randomness seems to be matched with a decrease in regularity.
Monofractal signals like the Brownian motion or the white Gaussian noise have
one single Hexp with an ideal null width [2]. In real-life examples, a signal
can get closer to one single and global Hurst exponent with a narrow width
of the D(h). In particular, if the Hexp becomes approximately 0.5, the signal
resembles a white Gaussian noise [121]. Therefore, the neonatal EEG becomes
less multifractal and more similar to a white noise with development. However,
this is more evident in NQS, which is the first state to become a continuous
tracing [8]. This decrease in multifractality and regularity is also reflected by
Table 5.3 and Table 5.2. The dominant group of features is represented by
the width of the singularity spectrum (either as c2 or ∆H) in NQS and the
∆H group of features outperform the main Hexp in both states. However, the
best regression performance is achieved in combination of the two sets. The
regression performance is comparable to or outperform other age model reported
in literature [191],[65],[145],[144],[192].

In summary, multifractal features can be used to detect sleep states and predict
brain maturation. In case of automatic sleep staging, the development of the
neonatal EEG has a clear impact on the performances of the classifiers for QS
detection in premature neonates, especially when multifractal features are used.
This might be caused by the morphological changes in the EEG activity that
evolves from a burst-like waveform to a more continuous trace during NQS
epochs. This is also reflected by the quantitative assessment of brain maturation
of the EEG.
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5.4 Summary

In this chapter, the multifractal formalism, as defined by [266], was presented
to analyze neonatal EEG in order to detect QS epochs from NQS epochs
in premature infants as well as to assess brain maturation. Although the
multifractal features did not outperform the classical spectral features, they
could explain the effect of maturation on the classification performances. This
investigation suggested that the changes in performance can be attributed to the
changes in multifractal behavior of the neonatal EEG. In particular, the width
of the singularity spectrum and the amount of singularities reduced in NQS
compared to QS epochs. However, this difference was less clear in premature
infants close to birth and explains why the detection of QS is possible only form
32 weeks PMA onward by means of EEG [8]. In support to that, the multifractal
parameters could estimate the age of the patient in both sleep states, but the
best performance is achieved during NQS. The signal became less regular and
multifractal with the development, but this decrease was highly pronounced in
NQS. The regression performance was comparable to other maturity indices
reported in the literature (R2

NQS = 0.83, MAENQS = 1.38 wks,R2
NQS = 0.78,

MAEQS = 1.96 wks). These results support the concept that EEG generation
mechanisms are highly non-linear and the description of both sleep staging and
maturation is not a trivial problem.





Chapter 6

The maturation of the
autonomic nervous system in
premature infants

This chapter has been submitted for publication as Lavanga M., Heremans E.,
Moeyersons J., Bollen B., Jansen K., Ortibus E., Van Huffel S., Naulears G.,
Caicedo, A. (2020). "Maturation of the autonomic nervous system in premature
infants: estimating development based on heart-rate variability analysis".
Lavanga M. has co-developed the methodology, conducted the experiments and
has written the manuscript. Compared to the submitted manuscript, minor
textual and notational changes have been implemented for better integration in
this thesis.

This chapter introduces the first model to describe the development of premature
infants’ autonomic nervous system (ANS) based on a quantitative analysis of the
heart-rate variability (HRV). Additionally, the specific role of heart-rate drops,
known as bradycardias, was examined in relationship to common clinical indices.
The HRV data was obtained from the ECG recordings of the same 25 preterm
infants with normal developmental outcome at 2 years reported in the previous
chapters. The total number of recordings was 74. After a bradycardia-based
segmentation, a variety of temporal, spectral and fractal indices were investigated
to describe the changes of HRV with the development and estimate the age of the
patient. Three main novelties can be reported. First, the obtained maturation
models based on HRV have comparable performance to other development models
in the previous chapters. Second, the selected features for age prediction show a
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predominance of power and fractal features in the very-low and low frequency
bands in explaining the infants’ sympatho-vagal development from 27 PMA
weeks until 40 PMA weeks. Third, bradycardias might disrupt the relationship
between common temporal indices of the tachogram and the age of the infant
and the interpretation of sympathovagal indices. This approach might reveal
better insights in the investigation of postnatal maturation. The results of this
chapter are reported in [147].

6.1 Introduction

Since the preterm neonatal population is at higher risk for development disorders
that can lead to adverse outcome [13], the investigation of maturation via
multiple physiological biomarkers is part of the clinical practice to prevent lower
cognitive, motor or language outcomes later on in life [132], [89]. A common
probe to inspect the development of the neurovegetative functions or Autonomic
Nervous System (ANS) is the heart-rate fluctuation, simply known as Heart-rate
variability (HRV).

The guidelines of the adults HRV task force clearly specify the association
between the different frequency tones of the tachograms and the stimulation
of the ANS branches [46]. The contribution of the sympathetic branch is
represented by the low-frequency band (LF , [0.04−0.15] Hz) of the HRV, while
the high-frequency band (HF , [0.15 − 0.5] Hz) reflects the parasympathetic
branch. The sympathovagal balance can be expressed by the power ratio of the
two frequency bands

(
LF
HF

)
, while the very-low frequency band (V LF , [0− 0.04]

Hz) is usually associated to thermal and hormonal regulation. On the contrary,
the fetal and preterm HRV frequency bands are still subject of an intensive
discussion in the literature. The early exposure to the ex-utero environment
induces an aberrant sympathetic response and delays autonomic maturation
[123],[239]. The association between the common HRV frequency bands and
the sympathovagal regulation is far less documented in infants and fetuses [71].
Other factors are known to play a role in the definition of the oscillations of the
heart-rate, such as intermittent breathing cycle with high respiratory frequency
and the actual delay in maturation of the autonomic nervous system. Therefore,
Doret et al. [71], David et al. [59] and Hoyer et al. [111] suggested that new
ways to investigate the sympathovagal balance should be examined. Since the
fetal heart-rate is characterized by a strong slow-wave baseline, David et al.
redefine the frequency bands for fetuses as follows: V LF = [0.02 − 0.08] Hz,
LF = [0.08− 0.2] Hz, HF = [0.2− 3] Hz. While adults normally presents an
HRV spectrum with two clear peaks at HF and LF [46], infants and fetuses have
a 1/f spectrum up to 0.1 Hz [129]. Consequently, the full description of the
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preterm ANS has to consider all the possible frequency bands (V LF ,LF ,HF )
[50],[160],[58],[166]. This could explain why the LF

HF ratio can give contradictory
results: Krueger et al. [136] did not find any specific change in this ratio in
a longitudinal study with preterm patients, while Longin et al. [160] found
a decrease in LF

HF from preterm to term age. The rapid development and
the unclear definition of the sympathovagal frequency bands might not give
a simple interpretation of LF

HF as it is for adults. Surprisingly, infants show
bigger changes in the absolute power of the three main bands V LF , LF , and
HF than relative power [160]. Hoyer et al. [111] argued that predominant
principles of autonomic development are not only an increase in heart-rate
variability, but also increasing complexity and pattern formation. Consequently,
HRV indices can be chosen to reflect these principles in order to describe the
sympathovagal balance maturation. Pattern formation can be described by
tachogram skewness and the new ratio V LF

LF , while the increasing complexity
is characterized by an increasing HRV entropy. It should also be stressed that
the computation of power ratios, such as LF

HF , requires stationarity, which can
be questioned in case of infants heart-rate time series. Therefore, Abry et al.
[2] and Doret et al. [71] proposed fractal analysis as an alternative method
to investigate the sympathovagal balance in fetal heart-rate. It focuses on
quantities such as oscillations or increments at different scales to tackle the
absence of stationarity and determines a specific relations between the fractal
exponents (such as the Hurst Exponent) and the LF

HF ratios. However, those
methods were never applied on premature infants.

One example of non-stationarity is the presence of bradycardias. These are
normally heart-rate drops below 70% of the heart-rate average, which last at
least for 4 s and may be associated with apneas. These drops can alter oxygen
saturation and blood flow putting organs at risk of damage [195]. In general,
apneas and bradycardias can be uncorrelated, but apneic spells that occur with
bradycardias are most likely to affect brain homeostasis. In addition, apneas and
bradycardias are the probable consequence of the immature respiratory system,
and the apneas’ occurrence tends to decrease with increasing age [12] [212]. The
bradycardia can then be considered a consequence of heart-rate disregulation,
which can disrupt the state-space and the probability density function of the
tachogram [92]. Any proper model that tries to describe the development of the
infants’ ANS has to include not simply the slow variation of the basal heart-rate,
but the sudden drops of the tachogram. Those nonstationary events possibly
affect the most common HRV temporal or spectral features used in clinical
practice and can bias conclusions of the medical community. For example,
bradycardias can forcefully increase the variability of the tachogram or its
regularity.

In order to address the shortcomings by the studies outlined above, a new
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framework to describe autonomic maturation in healthy preterm babies is
provided in this chapter. This research can be divided in two main strands. First,
both spectral analysis and multifractal analysis are employed to investigate the
neurovegetative development of the sympathovagal balance and its complexity
and track maturation. Second, the impact of bradycardias on ANS maturation
is investigated. This chapter tries to provide a complete overview of autonomic
maturation in premature neonates, including non-stationary events such as
bradycardias. The final clinical objective is to provide novel maturation charts
for the premature autonomic nervous system in the first weeks of life and correct
the effect of heart-rate events on common clinical HRV indices. Those normative
charts might be used as reference to investigate early-life and ex-utero factors
that can deviate from a normal premature development and define suitable
therapies in the neonatal intensive care unit.

6.2 Methods

6.2.1 Dataset

The dataset consists of electrocardiograms (ECG) of 25 preterm infants, that
were recorded at the Neonatal Intensive Care Unit of the University Hospital
of Leuven. It was collected in a multimodal setting for another research study
related to brain development and a sleep-stage analysis (see [67], [132] and
Section 1.2). Inclusion criteria were: a normal neurodevelopmental outcome at
9 and 24 months corrected age (Bayley Scales of Infant Development-II, mental
and motor score > 85), no severe brain lesions, assessed by ultrasound, and not
taking any sedative or antiepileptic drugs during the EEG registration. The
sampling ECG frequency was 250 or 500 Hz and the average length of the
recording was 4h 44 min. An overview of the dataset is reported in Table 6.1.

6.2.2 Preprocessing

The HRV represents the instantaneous fluctuations of heart rate and is usually
expressed by the tachogram which visualizes the variations of the time interval
between two consecutive R-peaks (RR intervals, RRi). In order to compute a
RRi time series, the R peaks of the ECG have been detected via the Matlab
toolbox by Moeyersons et al. [172], which is based on enveloping procedure.
This graphical user-interface also allows for correction and deletion in case of
erroneous R-peaks. In case of a single missing R-peak, the value was replaced
by using the formula:
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Table 6.1: Demographics of the 25 patients: average duration of the tachogram
in minutes (DurationRec), average duration of the annotated bradycardias in
s (DurationWB),average number of the annotated bradycardias (NumberWB),
average RR amplitude during the bradycardia in ms (RRWB), postmenstrual
age in weeks (PMA) and gestational age in weeks (GA). The last three rows
represent the number of recording for each age subgroup (below 32 PMA weeks,
between 32 and 36 weeks and above 36 weeks).

Number of patients = 25
DurationRec (min) 208.435± 115.657
DurationWB (s) 18.881± 8.332
NumberWB 7± 12
RRWB 631.405± 78.677
PMA (wks) 33.689± 3.049
GA (wks) 28.315± 2.318
PMA ≤ 32 wks 22
PMA ∈ (32− 36] wks 35
PMA > 36 wks 17

R̂t = Rt−1 +Rt+1

2 , (6.1)

where R̂t is the estimated position of the missed R-peak, while Rt−1 and Rt+1
are the location of the previous and following R-peak. In case of two or more
missing R-peaks due to ECG flat lines or muscle artifacts which made the QRS
detection impossible, the contaminated parts of the signal were discarded. In
case that less 20 minutes of noise-free signal remained, the signal was discarded.
All included recordings had at least 50 minutes of available data for a total of
74 recordings.

Besides the preprocessing of artifacts and before the feature extraction,
we also dealt with the sudden drops of heart-rate, known as bradycardias.
Although those phenomena are completely natural in the developing infant,
they can suddenly increase the frequency content of the RRi series. Therefore,
traditional linear spectral and temporal analysis might not be suitable since
the instantaneous variance and mean of the heart-rate can vary over time,
as explained in detail by [92]. According to the same study, the heart-rate
activity that precedes sudden drops might differ from the drops itself and other
bradycardia-free periods. Consequently, bradycardias have been detected in
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the current studies before any further processing. Based on the definitions of
apnea of prematurity and bradycardias by [195], the bradycardia spells were
detected as sudden RRi increases above 1.5*RRi that persist for more than 4
s, where RRi is the median tachogram of the entire recording. Subsequently,
three different windowing strategies were applied:

1. Post-bradycardia (PB) windowing: the immediate 10 minutes after the
bradycardic event were considered a candidate for features’ extraction. It
is important to remember this window did not include the bradycardia
itself.

2. Between-bradycardias (BB) windowing: all non-overlapping 10 minute
windows contained between bradycardic events were considered as
candidate epochs for features’ extraction. The first viable window was at
least 10 minutes away from the bradycardic event in order to guarantee
that the signal was stabilized.

3. Within-bradycardia (WB) windowing: a 10 minute window was considered
from the moment that the signal exceeds the threshold 1.5*RRi in the
tachogram, i.e. the supposed start of the bradycardic event. This
windowing should involve both the information related to the heart-rate
drop and the recovery period.

A visual description of the windowing scheme is reported in Figure 6.1. The grey
dashed boxes highlight the three type of windows (WB,BB,PB) that can be
determined in a single trace, while the dot-dash box shows typical bradycardia
events.The average duration and amplitude of a bradycardia event is reported
in Table 6.1, which also shows the average number of bradycardias in the entire
dataset. Some of the recordings did not have any heart-rate drop according to
the reported definition. Therefore, the windowing scheme based on bradycardias
was not applicable. In this specific case, the design choice was a segmentation in
non-overlapping 10 minutes windows and assign the results of feature extraction
to post-bradycardia windowing scheme (see Figure 6.2).

6.2.3 Feature extraction

In each of the windows defined according to the PB,BB and WB schemes,
a set of temporal, spectral and fractal features were derived to describe the
autonomic nervous system of the premature infants and its relationship with
development. An overview of the different attributes is reported in Table 6.2.
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Figure 6.1: Visual representation of the three windowing schemes applied in
this investigation: postbradycardia scheme (PB), between-bradycardia scheme
(BB) and within-bradycardia scheme (WB). The selected windows in each
trace are indicated with grey dashed boxes, while the dot-dashed boxes show
examples of annotated bradycardia. In case of BB windowing, a period T
greater that 10 minutes is present between the end of the bradycardia and the
first available window.

Temporal Indices

Based on the most common guidelines related to HRV processing [123] and
[46], the first and the second order moments of the RRi, i.e. the mean of the
tachogram (µRR) and the standard deviation (σRR), were computed in order
to assess the level of the variability.

Spectral analysis

The sympathovagal activity is normally assessed by the computation of the
spectral power in the different HRV frequency bands [46]. Unlike adults, the
premature infants have a higher mean heart-rate with very slow oscillation
around it [59],[50]. Therefore, the frequency bands of the premature patients
were defined as follows: V LF = [0, 0.08] Hz, the low-frequency LF = [0.08, 0.2]
Hz and high frequency HF = [0.2, 3.0] Hz. Additionally, the RR time series
of the premature infant can be nonstationary due to a series of events, like
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bradycardias or other heart-rate disregulation (see section 2.3). Therefore, the
power spectral density was computed with time-frequency (TF) methodologies
reported in section 3.1.1: the Welch’s periodogram, the quadratic smoothed
pseudo Wigner-Ville distribution (SPWD) [187] and the continuous wavelet
transform (CWT) [59].

In particular, one can compute the absolute power in three bands V LF , LF and
HF as the reported integral in (3.6). Besides, the ratios V LF

LF and LF
HF were also

computed alongside two indices to represent the normalized LF power: LF
V LF+LF

and LF
HF+LF . In case of Welch’s algorithm, there is no dependency from the

time variable t. On the contrary, CWT and SPWD generates a time series for
each selected frequency band, as highlighted by (3.1),(3.4) and (3.6). In order
to obtain one single value for each window, the median of this time-series was
taken into account. The set of spectral features derived for each methodology
is reported in the central block of Table 6.2.

6.2.4 Multifractal analysis

Since spectral analysis requires stationarity of data and the very definition
of the tachogram series frequency bands have been questioned, the HRV was
also analyzed according to the fractal or multifractal paradigm. As shown in
[71], the infant’s tachogram is a fractal or scale free signal, which presents a
power-law decay spectrum as follows:

SRR(f) = |C|f−2(Hexp−1) (6.2)

where Hexp is known as the Hurst exponent and controls the decay of the
power function. H is also a representative parameter for fractal time series
and there can be more than one exponent for each signal. A signal with one
single exponent is commonly known as monofractal, while a signal with multiple
exponents h is known as multifractal [118]. Small values of h represent sharp
and transient regularity or singularity, while large values represent smooth
changes [151].

An efficient method to determine the amount of exponents or singularities h is
the multifractal formalism reported in Section 3.1.3. Thanks to the partition
function Z(a, q), the scaling exponents τ(q) (SE) associated to this decay can
be obtained by computing the slope of Z versus the scales in a log-log diagram
from a certain scale a1 = 2j1 to a certain scale a2 = 2j2 . The log-transform
clearly shows the advantage to define scales as power quantities.
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The multifractality parameters (Hexp, C2) were computed in the entire non-
overlapping window according to three schemes discussed in Section 6.2.2.
Similar to Chapter 5, the multifractal features were derived using the Wavelet p-
Leader and Bootstrap based MultiFractal analysis (PLBMF) MATLAB toolbox,
described in [266]. This toolbox can be downloaded from https://www.irit.
fr/~Herwig.Wendt/software.html. A fundamental design choice is the scale
range [2j1 , 2j2 ] from which the exponent τ(q) is estimated from (3.12) [2], [266].
In case of HRV, the exponents [j1, j2] are normally set equal to [3, 12]. Given
the fact that the scale can be written as a = 2j = (fs/2)/f with fs as sampling
frequency of the signal, it follows that the range [j1, j2] = [3, 12] approximately
represents the frequency band ≈ [0.375, 0.001] Hz with fs = 6 Hz. In case that
[j1, j2] = [5, 12], the chosen scale range approximately represents the frequency
band ≈ [0.094, 0.001] Hz. It is clear the first range considers part of the HF
band, while the latter solely focuses on the combination of LF and V LF .
Since the chosen scale range might influence the multifractal attributes, both
ranges were tested to investigate which frequency bands mostly reflects the
sympathovagal balance. In fact, the main Hurst exponent Hexp or C1 parameter
is able to influence the ratio LF

HF . Based on (6.2), one can rewrite the spectral
ratios as:

LF

HF
=
∫ fI
fm
SRR(f)df∫ fM

fI
SRR(f)df

= (f2−2Hexp
I − f2−2Hexp

m )
(f2−2Hexp
M − f2−2Hexp

I )
(6.3)

where [fm, fI ],[fI , fM ] represent the frequency bands of LF and HF . Taking
into account that the Hurst exponent and the LF

HF are related and taking also into
account that the chosen [j1, j2] decides which frequency bands the multifractal
parameters are related to, the scales investigation of the fractal properties can
shed a light which bands mainly reflect the sympathovagal activity. The set
of fractal features derived for each methodology is reported in last block of
Table 6.2.

6.2.5 Algorithmic pipeline and statistical analysis

The processing pipeline to estimate the age of the infant is reported in Figure 6.2.
For each HR time series, the signal was split according to the PB,BB and
WB windowing scheme reported in Figure 6.1 and all the features reported in
Table 6.2 were extracted. Besides artifact removal, a fundamental preprocessing
step is the resampling of the tachogram. The behavior of nonlinear features can
depend on the sample rate, as also shown by the definition of the scales and their
range for the multifractal parameters (Section 6.2.4). Based on the findings by

https://www.irit.fr/~Herwig.Wendt/software.html
https://www.irit.fr/~Herwig.Wendt/software.html
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[37], the following sampling frequencies were tested for fractal indices: [6, 8, 12]
Hz. In contrast, the sampling frequencies for the spectral and temporal indices
was set to 6 Hz in order to include the higher respiratory frequency of premature
infants [46],[123].

As described in Section 6.2.3, the tuning and designed parameters for the spectral
and fractal analysis were chosen in accordance to the absence of stationarity and
the persistent slow-wave baseline of the premature HRV signal. The necessity
to investigate long-range fluctuations and a recovery period after events such as
bradycardias justify the segmentation in 10 minutes. Normally, time-frequency
approaches use windows longer than 600 s to describe evolution in HRV spectrum
[268],[187] and the fractal indices also requires windows of this size to fully
investigate changes in regularity [2],[71]. Additionally, the BB andWB schemes
can generate a set of windows and therefore an array of features based on the
number of bradycardias present in each recording (on average, 7 bradycardias
per recording, as reported by Table 6.1). In order to obtain one representative
value for each recording in each windowing scheme, the median of this array
of attributes over the different windows was computed for each recording, as
highlighted by the grand-median block in Figure 6.2.

After the features’ extraction process and the grand-median step, three datasets
were then obtained according to the three different windowing schemes. The
number of features extracted for each dataset was then 27 in total: 21 for the
spectral attributes, 2 for the temporal ones, 4 for fractal indices, as shown in
Table 6.2.

In order to investigate the ANS maturation, the HRV features were used to
estimate the PMA of the patient, as shown by the last block of the diagram in
Figure 6.2. Since the PMA is known for each recording, a linear mixed effects
(LME) regression model was developed for each dataset with PMA as response
variable [149]. The actual regression consisted of two steps. First, the features
were selected via the least absolute shrinkage and selection operator (LASSO)
due to the high number of features, after that the absolute power features were
log-transformed (see Section 3.3.3). Specifically, the LASSO was repeated for
20 iterations on the entire dataset and the features which were selected in more
than 40% of the total number of iterations (8 iterations out of 20) were included
in the regression model [149]. Second, a linear mixed-effect regression model
was built with the selected subsets with multiple random splits of the data. In
particular, the dataset was split into 70% training set and 30% test set for 20
iterations and the model was developed on the train set and tested for test
set for each iteration. The performance was then assessed as mean absolute
error MAE on the test set, as well as explained variance R2, both on train
and test set (R2

train, R2
test). The results were reported as median(IQR) (where

IQR stands for InterQuartile Range) over the 20 iterations. A linear-mixed
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effect model requires the definition of a grouping variable which introduces the
random effect and the patient ID was taken as grouping variable since a set of
one or more recordings belong to a patient (as discussed in a previous study
[149]) . Furthermore, the LME regression with the LASSO procedure was not
simply examined for the entire subset of features, but also for the three subset
feature groups: temporal, spectral and fractal attributes. In case of temporal
features regression, the LASSO step was not performed.

On top of that, the trend for the ANS features throughout the patients’
development was also reported as median(IQR) in three age groups (PMA
≤ 31 weeks, PMA ∈ (31 − 36] weeks, PMA > 36 weeks) as well as Pearson
correlation coefficient with PMA.

Table 6.2: Overview of all computed features. Besides the first and the second
order moments, the table reports all the relative and absolute power features
in the frequency domain, namely the power in VLF, LF and HF bands, the
ratio between the VLF and LF bands and between LF and HF bands and
the normalized LF band power with respect to VLF band and HF band. The
spectral features are reported for each the PSD estimation approaches that were
used in this investigation. The last section reports the computed multifractal
features, i.e. Hurst exponent (Hexp) and the (C2) for the investigated scale
ranges: [j1, j2] = [3, 12] and [j1, j2] = [5, 12].

Temporal features
Statistical moments µRR, σRR

Spectral features
Welch P (V LF ),P (LF ),P (HF ),

V LF
LF , LFHF ,

LF
LF+HF ,

LF
LF+V LF

SPWVD P (V LF ),P (LF ),P (HF ),
V LF
LF , LFHF ,

LF
LF+HF ,

LF
LF+V LF

Wavelet P (V LF ),P (LF ),P (HF ),
V LF
LF , LFHF ,

LF
LF+HF ,

LF
LF+V LF

Fractal features
Multifractality Hexp,[j1,j2=5,12], C2,[j1,j2=5,12],

Hexp,[j1,j2=3,12],C2,[j1,j2=3,12]

6.3 Results

The overview of the dataset is reported in Table 6.1, which shows certain traits
of the annotated bradycardias. The mean length is around 18 s. On average,



138 THE MATURATION OF THE AUTONOMIC NERVOUS SYSTEM IN PREMATURE INFANTS

Figure 6.2: The block diagram shows the main steps of the age estimation. For
each RR signal, artifact preprocessing is performed and associated resampling of
the tachogram. The signal is split in different windows according to the scheme
of Figure 6.1. For each of these epochs, temporal, spectral and fractal features,
which undergo a grand-median process if there is more than one epoch per
scheme. The three datasets are then used to estimate the age of the recording
in a linear mixed effects (LME) regression.

there are 7 bradycardias per recording and the mean RRi during bradycardias
is approximately 631 ms. The overview shows that the infants have an average
PMA of 34 weeks and 35 recordings are collected in the range (32-36] weeks.
A total of 22 recordings is collected in the first days of life, while a set of 17
recording has been included from the weeks close to discharge.

Figure 6.3 and Table 6.3 report the trends in the three different windowing
schemes for the following features: the mean µRR and standard deviation
of the HRV σRR, the absolute power in the LF band (and its logarithmic
transform), the relative LF

LF+V LF power, the Hurst Exponent in the range
[j1, j2] = [5, 12] Hexp[j1,j2=5,12] and the width of the singularity spectrum in the
same range C2[j1,j2=5,12] . The overview of all features for all different windowing
schemes (PB,BB and WB) are reported in the supplementary Tables A.1, A.2
and A.3. Figure 6.3 reports the results for the windowing scheme for the
within-bradycardia epochs on the left column, while the results for the between-
bradycardia epochs are shown on the right column. The power in the LF
band and the relative LF power ( LF

LF+V LF ) increase with increasing PMA in
both scenarios: in particular, Pearson correlations ρxy are respectively 69%
(72% with logarithm transform) and 64% for bradycardia epochs, while ρxy
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Table 6.3: The main temporal, spectral and fractal features are reported for
the three windowing schemes (PB, BB and WB). The results are reported
as median(IQR). IQR stands for interquartile range. The fractal indices are
reported for fs = 8 Hz. The symbol ρ stands for the Pearson correlation
coefficient. The symbol ∗∗ represents a significant correlation with p ≤ 0.01 and
n.s. is used to indicate a non-significant correlation.
Median(IQR) - PMA weeks ≤ 32 (32− 36] > 36 ρ(%)

POST-bradycardia (PB) group
µRR 374.65(366.38-391.36) 377.07(364.33-393.69) 387.2(374.98-416.44) 0.39∗∗
σRR 16.71(12.02-22.05) 25.5(21.65-31.1) 28.47(24.03-32.08) 0.49∗∗
P (LF )Wavelet 2.14(0.96-3.68) 4.17(2.16-8.9) 17.74(4.94-25.51) 0.69∗∗

LF
LF+V LF Wavelet

5.38(3.45-8.7) 4.9(3.67-12.17) 14.06(11.77-18.09) 0.57∗∗
Hexp,[j1,j2=5,12] 0.61(0.52-0.7) 0.55(0.45-0.59) 0.5(0.44-0.56) -0.47∗∗
C2,[j1,j2=5,12] -0.2(-0.26 - -0.17) -0.19(-0.21 - -0.13) -0.14(-0.15 - -0.11) 0.45∗∗

BETWEEN-bradycardia (BB) group
µRR 370.51(359.96-388.36) 377.42(363.11-389.25) 394.93(370.01-427.45) 0.47∗∗
σRR 13.89(10.97-18.49) 19.81(15.72-23.82) 29.1(21.99-30.66) 0.64∗∗
P (LF )Wavelet 1.3(0.86-3.38) 4.23(1.93-6.28) 11.34(8.4-15) 0.71∗∗

LF
LF+V LF Wavelet

6.93(4.89-8.53) 7.9(4.63-11.05) 12.57(8.75-13.95) 0.48∗∗
Hexp,[j1,j2=5,12] 0.6(0.52-0.68) 0.54(0.5-0.59) 0.48(0.45-0.52) -0.5∗∗
C2,[j1,j2=5,12] -0.19(-0.23 - -0.14) -0.17(-0.2 - -0.14) -0.09(-0.12 - -0.08) 0.43∗∗

WITHIN-BRADYCARDIA (WB) group
µRR 384.9(369.62-398.91) 384.16(369.2-397.51) 389.12(377.65-425.8) 0.37∗∗
σRR 38.31(32.22-44.62) 40.61(32.5-49.81) 35.89(28.43-40.74) -0.04n.s.
P (LF )Wavelet 2.3(1.12-4.03) 4.68(2.8-9.86) 18.66(5.35-26.46) 0.69∗∗

LF
LF+V LF Wavelet

2.57(1.13-3.97) 3.34(2.19-8.97) 10.96(6.69-16.78) 0.64∗∗
Hexp,[j1,j2=5,12] 0.61(0.49-0.71) 0.55(0.43-0.62) 0.49(0.43-0.52) -0.45∗∗
C2,[j1,j2=5,12] -0.26(-0.3 - -0.21) -0.21(-0.24 - -0.17) -0.13(-0.18 - -0.11) 0.54∗∗

are respectively 71% (71% with logarithm transform) and 48% for between-
bradycardia windows. Concerning the post-bradycardia period, the Table 6.3
shows a Pearson correlation of 69% for the power in LF band and 57% for

LF
LF+V LF . Results are here reported for the wavelet approach, but the other
spectral methodologies exhibit similar trends (see Tables A.1, A.2 and A.3).
In addition, the Hurst exponent (derived as the c1 of the singularity spectrum)
decreases with development (ρxy are -45% in the bradycardias scenario, -47% in
post-bradycardia scenario and -50% in the between-bradycardia scenario), while
the width of the singularity spectrum (c2 parameter) increases with increasing
PMA (ρxy are 54% in the bradycardia scenario, 45% in the post-bradycardia
scenario and 43% in the between-bradycardia scenario). The greatest contrast
was found with the variability of the heart-rate, σRR. While the standard
deviation increases with infants’ maturation in the between-bradycardia epochs,
the σRR does not increase with age within the bradycardic event. Moreover, it
is higher in the bradycardia epochs than in the between-bradycardia scenario
(ρbradycardia = −4% vs ρbetween = 64% with pv = 0.77 vs pv ≤ 0.01). The
multifractal parameters are reported for fs = 8 Hz in Table 6.3. A full overview
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of the effect of the sampling frequency on the fractal indices is reported in
Table 6.4.

Table 6.5 shows the regression results for the linear mixed-effect models, while
Table 6.6 reports the features selected by LASSO. Those two tables report
the results for the three different windowing schemes (PB,BB,WB) in three
different blocks, while the rows report the results for the different feature
groups (temporal, spectral and fractal attributes) and sampling frequencies.
The different columns respectively report the explained variance in the training
set (R2

train), the mean absolute error (MAE) and the explained variance in the
test set (R2

test). The best performance is reached for the combination of all
features at fs = 12 Hz in the PB scheme (R2

train = 0.75, MAE = 1.83 weeks,
R2
test = 0.57) as well as between bradycardias (R2

train = 0.68, MAE = 1.56
weeks, R2

test = 0.59). During the bradycardia event (WB), the best performance
is achieved with the spectral features (R2

train = 0.73, MAE = 1.9 weeks,
R2
test = 0.62). Table 6.6 shows that the selected features are the absolute

spectral power in LF and V LF together with C2 parameter in the range
[j1, j2] = [5, 12] for the first two schemes. For the WB scheme, the selected
feature is simply the power in LF band.

Figure 6.4 shows that the relationship of (6.3) between the Hexp and the
ratios V LF

LF and LF
HF . The first row shows the relationship between V LF

LF and
Hexp,[j1,j2=5,12] in the three windowing schemes: WB in magenta circles, PB
in light-blue squares and BB in indigo diamonds. The Pearson correlation
coefficients are respectively 21%, 49% and 43%. The second row shows the
relationship between LF

HF and Hexp,[j1,j2=3,12] in the same three schemes. The
Pearson correlation coefficients are respectively 18%, 20% and 36%.

6.4 Discussion

This chapter provides an overview of autonomic nervous system maturation
in preterm infants and aims to estimate the postmenstrual age of the infants
based on the HRV. Since the neonatal tachogram is signal characterized by lack
of stationarity and strong slow-wave baseline [111],[2],[71], the reported study
investigated the maturation of sympathetic and parasympathetic branches with
the combination of temporal, spectral and fractal indices. Three main novel
findings can be reported. First, Table 6.5 shows that the maturation of infants
can be assessed with different spectral and fractal HRV indices with comparable
performances to other maturation models for fetal and preterm development
by [111], [65], [144], [149]. Second, Figure 6.4 reports that the spectral ratio
V LF
LF and the Hurst exponent in the range [j1, j2] = [5, 12] are more correlated
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a) b)

c) d)

e) f)

g) h)

j) k)

Figure 6.3: The figure shows the linear-mixed effect regressions between the
post-menstrual age and the following HRV features: the standard deviation
of the tachogram σRR, the absolute and the relative power in the LF band(

log10(LF ), LF
LF+V LF

)
, the Hurst exponent Hexp,[j1,j2=5,12] and the parameter

C2. The sampling frequencies for the fractal indices is fs = 8 Hz. The left
column - magenta circles report the results for the bradycardia epochs, while
the right column - indigo diamonds the results for the between-bradycardia
epochs. ρ is the correlation coefficient with the associated significance pvalue.
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Table 6.4: The fractal features are reported in three different age categories
and for the investigated sampling frequencies fs = [6, 8, 12] Hz. The results
are reported as median(IQR) for the between-bradycardia and bradycardia
periods. IQR stands for interquartile range. The symbol ρ stands for the Pearson
correlation coefficient. The symbol ∗∗ represents a significant correlation with
p ≤ 0.01, and ∗ is used for a significant correlation with p ≤ 0.05. n.s. is used
to indicate a non-significant correlation.

Median(IQR) - PMA weeks ≤ 32 (32− 36] > 36 ρ(%)
Fractal features in the PB group, fs = 6 Hz

Hexp,[j1,j2=5,12] 0.53(0.46-0.67) 0.49(0.41-0.58) 0.45(0.36-0.5) -0.45∗∗
C2,[j1,j2=5,12] -0.2(-0.25 - -0.18) -0.19(-0.22 - -0.15) -0.13(-0.17 - -0.1) 0.57∗∗
Hexp,[j1,j2=3,12] 0.65(0.56-0.71) 0.6(0.55-0.68) 0.56(0.53-0.6) -0.4∗∗
C2,[j1,j2=3,12] -0.17(-0.18 - -0.13) -0.13(-0.16 - -0.11) -0.09(-0.12 - -0.08) 0.41∗∗

Fractal features in the PB group, fs = 8 Hz
Hexp,[j1,j2=5,12] 0.61(0.52-0.7) 0.55(0.45-0.59) 0.5(0.44-0.56) -0.47∗∗
C2,[j1,j2=5,12] -0.2(-0.26 - -0.17) -0.19(-0.21 - -0.13) -0.14(-0.15 - -0.11) 0.45∗∗
Hexp,[j1,j2=3,12] 0.67(0.6-0.71) 0.66(0.59-0.69) 0.62(0.58-0.65) -0.33∗
C2,[j1,j2=3,12] -0.14(-0.16 - -0.1) -0.11(-0.14 - -0.08) -0.09(-0.11 - -0.09) 0.2n.s.

Fractal features in the PB group, fs = 12 Hz
Hexp,[j1,j2=5,12] 0.62(0.52-0.7) 0.56(0.49-0.64) 0.53(0.44-0.54) -0.45∗∗
C2,[j1,j2=5,12] -0.2(-0.23 - -0.16) -0.17(-0.19 - -0.15) -0.11(-0.13 - -0.1) 0.57∗∗
Hexp,[j1,j2=3,12] 0.67(0.61-0.73) 0.64(0.61-0.71) 0.62(0.6-0.63) -0.33∗
C2,[j1,j2=3,12] -0.13(-0.15 - -0.11) -0.11(-0.13 - -0.09) -0.09(-0.11 - -0.08) 0.22n.s.

Median(IQR) - PMA weeks ≤ 32 (32− 36] > 36 ρ(%)
Fractal features in the BB group, fs = 6 Hz

Hexp,[j1,j2=5,12] 0.55(0.45-0.65) 0.52(0.43-0.55) 0.45(0.4-0.48) -0.43∗∗
C2,[j1,j2=5,12] -0.19(-0.24 - -0.16) -0.17(-0.2 - -0.13) -0.11(-0.12 - -0.09) 0.52∗∗
Hexp,[j1,j2=3,12] 0.65(0.56-0.69) 0.61(0.57-0.67) 0.55(0.52-0.59) -0.39∗
C2,[j1,j2=3,12] -0.15(-0.17 - -0.12) -0.13(-0.15 - -0.1) -0.08(-0.1 - -0.06) 0.39∗

Fractal features in the BB group, fs = 8 Hz
Hexp,[j1,j2=5,12] 0.6(0.52-0.68) 0.54(0.5-0.59) 0.48(0.45-0.52) -0.5∗∗
C2,[j1,j2=5,12] -0.19(-0.23 - -0.14) -0.17(-0.2 - -0.14) -0.09(-0.12 - -0.08) 0.43∗∗
Hexp,[j1,j2=3,12] 0.68(0.61-0.73) 0.65(0.6-0.67) 0.6(0.55-0.62) -0.36∗
C2,[j1,j2=3,12] -0.12(-0.15 - -0.1) -0.12(-0.14 - -0.1) -0.08(-0.09 - -0.05) 0.23n.s.

Fractal features in the BB group, fs = 12 Hz
Hexp,[j1,j2=5,12] 0.62(0.52-0.68) 0.57(0.52-0.63) 0.52(0.48-0.53) -0.43∗∗
C2,[j1,j2=5,12] -0.18(-0.23 - -0.16) -0.15(-0.19 - -0.12) -0.09(-0.11 - -0.08) 0.53∗∗
Hexp,[j1,j2=3,12] 0.68(0.6-0.71) 0.64(0.6-0.69) 0.59(0.54-0.64) -0.31n.s.
C2,[j1,j2=3,12] -0.12(-0.14 - -0.11) -0.11(-0.12 - -0.1) -0.08(-0.1 - -0.06) 0.26n.s.

Median(IQR) - PMA weeks ≤ 32 (32− 36] > 36 ρ(%)
Fractal features in the WB period, fs = 6 Hz

Hexp,[j1,j2=5,12] 0.52(0.42-0.7) 0.48(0.39-0.52) 0.43(0.4-0.46) -0.36∗∗
C2,[j1,j2=5,12] -0.23(-0.29 - -0.2) -0.21(-0.24 - -0.17) -0.14(-0.18 - -0.12) 0.55∗∗
Hexp,[j1,j2=3,12] 0.62(0.58-0.67) 0.6(0.53-0.63) 0.57(0.5-0.6) -0.31∗
C2,[j1,j2=3,12] -0.19(-0.23 - -0.15) -0.16(-0.19 - -0.14) -0.1(-0.12 - -0.09) 0.48∗∗

Fractal features in the WB period, fs = 8 Hz
Hexp,[j1,j2=5,12] 0.61(0.49-0.71) 0.55(0.43-0.62) 0.49(0.43-0.52) -0.45∗∗
C2,[j1,j2=5,12] -0.26(-0.3 - -0.21) -0.21(-0.24 - -0.17) -0.13(-0.18 - -0.11) 0.54∗∗
Hexp,[j1,j2=3,12] 0.66(0.62-0.71) 0.64(0.58-0.68) 0.61(0.58-0.62) -0.36∗∗
C2,[j1,j2=3,12] -0.15(-0.2 - -0.12) -0.14(-0.17 - -0.11) -0.11(-0.12 - -0.09) 0.31∗

Fractal features in the WB period, fs = 12 Hz
Hexp,[j1,j2=5,12] 0.58(0.5-0.68) 0.56(0.5-0.6) 0.5(0.49-0.53) -0.36∗∗
C2,[j1,j2=5,12] -0.22(-0.28 - -0.19) -0.19(-0.22 - -0.17) -0.12(-0.14 - -0.1) 0.58∗∗
Hexp,[j1,j2=3,12] 0.64(0.61-0.68) 0.65(0.61-0.68) 0.63(0.6-0.65) -0.18n.s.
C2,[j1,j2=3,12] -0.16(-0.18 - -0.11) -0.13(-0.16 - -0.11) -0.11(-0.11 - -0.09) 0.32∗
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a) b) c)

d) e)
f)

Figure 6.4: The figure shows results for the linear-mixed effect regression
that models the relationship between Hexp,[j1,j2=5,12] and V LF

LF in the first row
and between Hexp,[j1,j2=3,12] and LF

HF in the second row. The three columns
respectively represents bradycardia epochs (magenta circle data points), post-
bradycardia epochs (light-blue squares data points) and between-bradycardia
epochs (indigo diamonds data points). ρ is the correlation coefficient of the
regression and pvalue represents the significance of the correlation.

than the LF
HF and the Hurst exponent [j1, j2] = [3, 12]. This might indicate

that neonates do not have sympathovagal balance that rely on the typical
interplay between LF and HF [2],[71]. Third, the bradycardias can impact
HRV maturational features, especially the most common temporal indices that
are used in clinical practice, as highlighted in italic by the regression with only
temporal features in the WB block of Table 6.5 and the correlation coefficients
in Table 6.3. Additionally, the relationship between spectral ratios and Hexp is
strongly diminished in the WB scheme, as stressed by Figure 6.4.

The different age models that were derived in this chapter can outperform
or can be compared to the other developmental models reported in the
literature [111], [149]. Specifically, Table 6.5 highlights the capacity of
spectral features to outperform all other features in the PMA estimation in all
three windowing schemes (R2

train = [0.74, 0.59, 0.72], R2
test = [0.57, 0.69, 0.62],

MAE = [1.83, 1.56, 1.9] Weeks ). Furthermore, the LF power is consistently
selected by LASSO for all the different fs and with any type of windowing
scheme. These results are not simply in line with decrease of V LF

LF by [111],
but they are also supported by other clinical findings. Namely, an increase of
the short-term variability of the tachogram was found during first days of life
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Table 6.5: Linear mixed-effect model performances. For each feature set and
sampling frequency fs, the table shows the median(IQR) over the 20 iterations
for R2

train on the train set as well as R2
test and the MAE in weeks on test set.

IQR here stands for the difference between 25% and 75% quantiles.

Post-bradycardia (PB) epochs
Feature type |fs R2

train MAE(weeks) R2
test

All features |6Hz 0.73(0.11) 1.88(0.39) 0.57(0.29)
All features |8Hz 0.75(0.1) 1.85(0.3) 0.56(0.23)
All features |12Hz 0.75(0.09) 1.83(0.41) 0.57(0.22)
Temporal features 0.44(0.28) 2(0.56) 0.35(0.19)
Spectral features 0.74(0.12) 2.01(0.42) 0.5(0.11)
Fractal features |6Hz 0.33(0.17) 2.21(0.42) 0.33(0.34)
Fractal features |8Hz 0.35(0.13) 2.31(0.54) 0.21(0.22)
Fractal features |12Hz 0.26(0.1) 2.18(0.46) 0.43(0.28)

Between-bradycardia (BB) epochs
Feature type |fs R2

train MAE(weeks) R2
test

All features |6Hz 0.55(0.12) 1.82(0.28) 0.57(0.24)
All features |8Hz 0.6(0.11) 1.81(0.38) 0.55(0.19)
All features |12Hz 0.68(0.11) 1.56(0.39) 0.59(0.16)
Temporal features 0.6(0.33) 2.06(0.38) 0.44(0.24)
Spectral features 0.59(0.19) 1.93(0.54) 0.59(0.15)
Fractal features |6Hz 0.3(0.22) 2.57(0.43) 0.15(0.19)
Fractal features |8Hz 0.22(0.26) 2(0.25) 0.24(0.36)
Fractal features |12Hz 0.34(0.28) 2.16(0.53) 0.18(0.31)

Within-Bradycardia (WB) epochs
Feature type |fs R2

train MAE(weeks) R2
test

All features |6Hz 0.73(0.1) 1.97(0.42) 0.58(0.25)
All features |8Hz 0.7(0.15) 1.91(0.21) 0.5(0.25)
All features |12Hz 0.72(0.15) 1.95(0.33) 0.57(0.24)
Temporal features 0.14(0.1) 2.79(0.35) 0.13(0.13)
Spectral features 0.73(0.17) 1.9(0.21) 0.62(0.21)
Fractal features |6Hz 0.33(0.07) 2.16(0.4) 0.23(0.18)
Fractal features |8Hz 0.36(0.13) 2.03(0.56) 0.43(0.22)
Fractal features |12Hz 0.4(0.16) 2.13(0.56) 0.29(0.28)

[62] and the absolute LF power can discriminate preterm and full term infants
with 84% accuracy [176]. However, the highest performances in the PB and
BB schemes are achieved when the fractal and spectral features are combined,
as highlighted in bold in Table 6.5 and suggested by the concomitant increase
of entropy and short-term variability of HRV found by [62]. Interestingly,
the highest performances are also achieved when the between bradycardias
epochs are considered (MAE = 1.56 Weeks), which further reveals a bias
effect of bradycardias in the description of autonomic maturation. In line with
[111],[160],[50],[58], we found that the tachogram mean µRR and its standard
deviation σRR increase with maturation together with the absolute power in all
investigated frequency bands. If the relative power is considered, both LF

V LF+LF
and LF

HF+LF increase with age (Table 6.3 and supplementary Tables A.1, A.2
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Table 6.6: LASSO selected features for the linear mixed-effect model. For each
feature set, the features that have been selected more than 40% of times have
been reported. σRR and µRR stand for the standard deviation and the mean
of HRV. log10(LF ), log10(V LF ),V LFLF stand for the absolute power in the LF
and V LF bands and the ratio between the two. Results are reported for the
Wigner-Ville distribution (SPWD) or the wavelet transform. Hexp,[j2,j2] and
c2,[j2,j2] stand for the Hurst exponent and the parameter c2 in the range [j1, j2].

Post-bradycardia (PB) epochs
Feature type |fs
All |6Hz log10(LF )SPWVD log10(LF )Wavelet C2,[j1,j2=5,12]
All |8Hz log10(LF )Wavelet

All |12Hz log10(LF )SPWVD C2,[j1,j2=5,12]
Spectral log10(LF )SPWVD log10(LF )Wavelet

Fractal |6Hz C2,[j1,j2=5,12]
Fractal |8Hz Hexp,[j1,j2=5,12] C2,[j1,j2=5,12]
Fractal |12Hz C2,[j1,j2=5,12]

Between-bradycardia (BB) epochs
Feature type |fs
All |6Hz µRR log10(LF )SPWVD

All |8Hz log10(LF )SPWVD

All |12Hz log10(V LF )Wavelet log10(LF )SPWVD C2,[j1,j2=5,12]
Spectral log10(LF )SPWVD

Fractal |6Hz Hexp,[j1,j2=5,12] C2,[j1,j2=5,12] Hexp,[j1,j2=3,12]
C2,[j1,j2=3,12]

Fractal |8Hz Hexp,[j1,j2=5,12]
Fractal |12Hz C2,[j1,j2=5,12]

Within-Bradycardia (WB) epochs
Feature type |fs
All |6Hz log10(LF )Wavelet C2,[j1,j2=5,12] C2,[j1,j2=3,12]
All |8Hz log10(LF )Wavelet C2,[j1,j2=5,12]
All |12Hz log10(LF )Wavelet C2,[j1,j2=5,12]
Spectral log10(LF )Wavelet

Fractal |6Hz C2,[j1,j2=5,12] C2,[j1,j2=3,12]
Fractal |8Hz Hexp,[j1,j2=5,12] C2,[j1,j2=5,12]
Fractal |12Hz Hexp,[j1,j2=5,12] C2,[j1,j2=5,12]

and A.3), which means the spectral ratios V LFLF and LF
HF had opposite directions.

While the latter increases with age, we also found that V LF
LF decreases as shown

by [111]. It should be stressed that the relative power features are less correlated
with age (see suppplementary Tables A.1, A.2 and A.3) and they are never
selected in the LASSO procedure (Table 6.6). These results confirm the findings
by [160] and [58], who found also greater increase in the absolute power during
maturation, and the findings by [176], which also displays the superiority of
the absolute power in the classification between preterm and full-term neonates
compared to the relative indices. The lack of stationarity and the 1/f spectrum
behavior make difficult to describe the autonomic maturation without all the
frequency bands in place. Furthermore, the regularity measure by the fractal
indices with the Hexp and c2 decreases with development and they play a role
in the age estimation models (Table 6.6).
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These findings seem to suggest that the ratio LF
HF might not be the best suitable

index for the sympathovagal balance and the common HRV frequency bands
are suitable for infants. As anticipated, David et al. noticed that the fetal
heart-rate has such enhanced slow-wave baseline, which increases the power in
the V LF band, such that both Hoyer et al. and David et al. used the ratio V LF

LF
as a possible index to describe the sympatho-vagal interplay [59], [111]. This
approach seems confirmed by the results in Figure 6.4. As discussed by Abry [2]
and Doret [71], the spectral ratio is linked to Hexp via (6.3). The panels suggest
that the ANS modulation and its fractal regularity lie in the lower-frequency
bands, since the Hexp is more correlated with V LF

LF . The Pearson correlation
coefficients ρxy between V LF

LF and H are respectively 21%,49%,43% according
to different windowing schemes compared to ρxy between LF

HF and Hexp (18%,
20% and 36%). It is important to notice that the Hexp matches the spectral
ratio if its estimation range [j1, j2] matches the frequency bands with most
of the exponential decay in the PSD. In this analysis, [j1, j2 = 5, 12] covers
specifically the lower frequency bands and its importance is confirmed by the
features selected by LASSO (Table 6.6). In line with Doret [71], the current
findings clearly suggest a redefinition of LF

HF with an extension of frequency
bands from the most common adults’ range, e.g. LF = [0.02− 0.15] Hz and
HF = [0.15 − 1.3] Hz. They also highlights the greater prominence of the
slower oscillations in the description of premature ANS.

However, the results also highlight the disruptive role of bradycardias in
maturation analysis. As anticipated, the best regression results are achieved
in the between bradycardia epochs (Table 6.5) and the relationship between
the spectral ratios and the Hexp is disrupted with WB windowing (panels with
magenta circle 6.4). Most importantly, the relationship between the temporal
features and maturation is lost, as highlighted by the poor R2 (Table 6.5 and
panels with magenta circles in Figure 6.3). In addition, Gee et al. [92] observed
that the LF power, the variance and the regularity of the heart-rate increase
before bradycardias. The results in Figure 6.3 and Tables A.2, A.3 support this
increase in variance and regularity (as can be easily noticed by the y-axis of σRR
or any other features of the left column in Figure 6.3). This finding clearly implies
that exclusion of bradycardias is fundamental whenever using the standard
deviation and the mean of the tachogram to assess the maturation of ANS.
Figure 6.4 also shows that bradycardias annihilate the expected relationship
between the spectral ratios and the Hurst exponent. This is a further proof that
bradycardias disrupt the vagal tone [212], which can distort the PSD power-law
in (6.2). However, Table 6.5 shows that the autonomic age models within
bradycardia can maintain comparable performance to the other two windowing
schemes thanks to the spectral features. In particular, Table 6.6 confirms that
the most selected power attribute is the power in LF = [0.08 − 0.2] Hz, as
further proof of the central role of this range in the bradycardic event and ANS
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maturation [92], [59], [111].

It is also important to highlight some limitations. Bolea et al. showed a
dependency for nonlinear metrics (such as Sample Entropy) with the resampling
frequency of the tachogram [37]. Based on their results, they concluded
that a resampling frequency correction of nonlinear parameters is needed
in cardiovascular applications in order to detect meaningful results (such
as experiments with body position changes) [37]. The employed fractal
indices clearly show a increasing trend with an increasing sampling frequency
(Section 6.2.4 and Table 6.4). However, a correction for the sampling frequency
was not implemented. The multifractal properties were investigated with
different sampling frequencies and our analysis seems to show mild differences
in term of regression results and correlation with age (Table 6.4). One may also
object the exclusion of proper sleep-staging in the current analysis, as normally
done by [58]. However, the specific focus on the bradycardia effect strongly limit
the number of the windows available. On top of that, bradycardias are events
normally associated to active sleep [212] and most of the annotated bradycardias
in this investigation were found during states that were not associated to quiet
sleep. Similarly, one may also find the number of patients limited, but it was
caused by the difficulties in the follow-up. All the included patients had normal
developmental outcome at 2 years and the development assessment process is
normally characterized by large drop-outs. Concerning the methodology, the
different spectral methods (Welch, Wavelet and Wigner-Ville) show very similar
spectral trends, but LASSO more frequently tends to select time-frequency
distribution features (Wavelet and Wigner-Ville, Table A.2, A.3). Although
there are studies that claim the superiority of the quadratic time-frequency
methods [268],[187], the current findings show the wavelet approach would
suffice for the spectral analysis.

In a nutshell, the HRV analysis might a useful tool for development monitoring,
but two important factors have to be taken into account. First, the neonatal HRV
is characterized by a very-low frequency tone which requires a redefinition of the
different frequency bands to the autonomic stimulation. Second, bradycardia
have a disruptive role in the assessment of maturation.

6.5 Summary

In the present chapter, the maturation of the preterm autonomic nervous system
was investigated by means of temporal, spectral and fractal features of HRV.
Three main findings can be reported. First, infants’ maturation can be described
by means of multifractal and spectral analysis, which show an increasing trend
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of LF power as well as decreasing trend of fractal regularity with increasing
post-menstrual age. The best obtained regression performances (R2 = 0.68
and MAE = 1.56 weeks) are obtained as combination of fractal and spectral
features and are comparable to other developmental models reported by different
authors [111], [144], [149], [65]. Second, this predominance of LF and V LF
bands as well as the lower scales for the multifractal indices suggest that the
sympathovagal balance of neonates might not simply be related to the ratio LF

HF ,
but the entire HRV band and the regularity of the tachogram should be included
to have better understanding of the ANS maturation. Third, bradycardias might
forcefully increase the variance of the heart-rate and disrupt the relationship
between autonomic indices and age. The PMA estimation models based on
novel HRV indices provides a more comprehensive understanding of postnatal
autonomic maturation. They can be also considered an alternative automated
maturity index to other electrophysiological data analysis for the NICU. This
research might be a first step to design personalized therapies or preventive
care to preserve infants’ development.
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Chapter 7

A bradycardia-based stress
calculator for the neonatal
intensive care unit: a
multisystem approach

This chapter has been published as Lavanga M., Bollen B., Jansen K., Ortibus
E., Van Huffel S., Naulaers G., Caicedo A. (2020). "A bradycardia-based
stress calculator for the neonatal intensive care unit: a multisystem approach".
Frontiers in Physiology, 11, 74. Lavanga M. has developed the methodology,
conducted the experiments and has written the manuscript. Compared to the
publication, minor textual and notational changes have been implemented for
better integration in this thesis.

Early life stress in the neonatal intensive care unit (NICU) can predispose
premature infants to adverse health outcomes and neurodevelopment delays.
Hands-on-care and procedural pain might induce apneas, hypoxic events and
sleep-wake disturbances, which can ultimately impact maturation. However,
a data-driven method based on physiological fingerprints to quantify early-life
stress does not exist. This chapter provides an automatic stress detector by
investigating the relationship between bradycardias, hypoxic events and perinatal
stress in NICU patients. A binary classifier was designed with physiological data
from 136 patients and the stress burden assessed by the Leuven Pain Scale. The
results of this study were published in [142].

151



152 A BRADYCARDIA-BASED STRESS CALCULATOR FOR THE NEONATAL INTENSIVE CARE UNIT:
A MULTISYSTEM APPROACH

7.1 Introduction

Premature infants are at risk of maladaptive outcomes and neurodevelopment
delays. Patients who spend their early life in the neonatal intensive care unit
(NICU) can undergo profound alterations of sleep-patterns as well as exposure to
painful procedures and noxious stimuli [16],[100]. Grunau et al. have shown how
stress exposure can induce a cascade of physiological consequences, behavioral
and hormonal responses [100]. In addition, Brummelte et al. highlighted how
procedural pain can affect structural connectivity of the subcortical areas during
neurodevelopment [42].

In particular, routine day-care has been reported to affect sleep quality inside
the NICU [16]. Levy et al. showed that prolonged contact in NICU can have
multiple consequences [153]. 57% of the sleeping infants experience awakening
because of hands-on care. Handling is usually followed by respiratory events,
such as hypoapneas and apneas, or desaturations. Surprisingly, clinical handling
is more likely to initiate oxygen desaturation and bradycardias. Monitoring of
respiratory and hypoxic events is pivotal since experience of long bradycardias
and apneic spell in very-low weight infants are known to impact the development
of the patients [109],[122], [205]. In particular, Janvier et al. showed that a
higher apnea burden (total amount of apnea days in the ward) is associated
to a worsening of the cognitive and motor outcome [122]. Prolonged oxygen
desaturations associated with bradycardias are known to have greater negative
effect on cerebral oxygenation [205] and the persistence of their effect can be
even prolonged at 5-6 months corrected age, with worse SpO2 and heart-rate
drops compared to full-term infants at equivalent age [109]. Furthermore,
bradycardias were under scrutiny in different studies as a sign of autonomic
nervous system development. Gee et al. showed how the heart-rate variance
and entropy dramatically change before any heart-rate drop [92]. This could
be the consequence of a dysfunction of vagal stimulation, which induces the
bradycardia, according to the polyvagal theory by Porges and colleagues [212].
Those events are usually preceded by low-heart rate variability as a sign of fetal
distress [212].

Although a possible link exists between stress burden and cardiorespiratory
events, an automated method to quantify stress exposure in the NICU based
on physiological signal activity, especially during oxygen desaturations or
bradycardias, has not been described yet. However, the literature provides an
overview on how physiological signals can be used to investigate pain and apneic
spells in adults. Multiple authors described machine-learning models to classify
pain-patterns using different modalities, such as EEG or EMG [170],[102]. In
parallel, other authors described an algorithm to detect apnea events based on
SpO2 analysis [68]. In addition, some authors already investigated a possible link
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between modalities that describe brain activity and modalities that describe
cardiovascular activity, in the case of apneic spells or desaturation events.
Specifically, a recent study proposed a model to explain how pre-frontal cortex
dysfunctions in adults and children can be caused by obstructive sleep apneas
due to disruption of sleep and chemical homeostasis [29]. Pitson et al. showed
that SpO2 dips due to apneas are related to the patients’ daily sleepiness, which
can affect the emotional and behavorial state. Interestingly, those desaturation
events seem to significantly correlate to other physiological events, such as EEG
and heart-rate arousals [209].

This inherent coordination of different physiological systems in case of apneas, as
highlighted by Pitson et al. [209], or the necessity to rely on different modalities
to classify biopotential information, as shown by several authors [102],[170],
strongly suggest a horizontal interaction among organs, which might be altered
in case of stress or hypoxia, and might require different tools to approach the
alteration of the physiological state of the patients [120]. This synchronization
among different organs or signal modality is known as Network Physiology
and was specifically applied to show the alteration between brain activity and
parasympathetic tone of the HRV [127] and the synchrony between the neonatal
EEG bursts and the heart-rate accelerations of the infants [204]. However, one
might investigate network physiology in the infants and relate that to a specific
physiological condition. As highlighted by Bashan et al. [25], physiological
systems under neural regulation exhibit a high degree of complexity with non-
stationary, intermittent, scale-invariant and nonlinear behaviour and change
in time under different physiological states and pathological conditions. One
can not only simply derive the integration among the different physiological
systems, but might also try to summarize the topological properties of the
physiological network and investigate their evolution over time [22],[23]. The
clinical literature also suggested that the overall activity of the individual
physiology cannot simply be summarized as the sum of the individual organs’
physiology, but it requires an investigation of the interaction among the different
sub-systems, especially in the intensive care setting [174].

Since the clinical literature already showed a unique relationship between
handling of infants and apneas or hypoxic events [153], the aim of this study is
the development of a classification model to relate hypoxias to patient’s stress
exposure. A binary classifier was developed to classify whether a bradycardic
event belonged to a patient with stress or without stress burden. Due to the
interdisciplinary nature of hypoxic events and stress exposure, the study aimed
not only to derive the features from different modalities, but assess the network
physiology of the patients and its relationship with stress load and bradycardias.
Stress is here intended as the accumulation of procedural pain, as described in
Section 2.5 and in [100]. The ultimate goal of this analysis is to demonstrate
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if stress is associated to cardiorespiratory abnormalities or other physiological
abnormalities. Bebee et al. [29] showed that hypoxias and sleep disruptions
might impact the prefrontal cortex and therefore the cognitive function of the
patient. The specific detection of hypoxic events related to stress might lead to
a possible explanation how the accumulation of pain influences the development
outcome.

7.2 Material and methods

7.2.1 Patient sample

Data from preterm infants were collected as part of the Resilience Study,
which has been carried out in the Neonatal Intensive Care Unit (NICU) of the
University Hospitals Leuven, Belgium. A total of 136 preterm infants born
before 34 weeks gestational age (GA) and/or with a birth weight less than
1500 g was included in the cohort from July 2016 to July 2018. The exclusion
criteria and information related to the research protocol or the inform consent
are reported in Section 1.2.

7.2.2 Data acquisition

During the NICU stay, pain levels were daily recorded with a multidimensional
scale for premature infants known as the Leuven Pain Scale (LPS). This scale
varies in the range [0,14] and is obtained as the sum derived by seven categories
(such as crying, grimace or heart-rate) [7], [6]. LPS scores were routinely daily
recorded by bed-side nurses, every hour for the intensive care patients and every
three hours for the intermediate care.

Based on the association between stress and pain, perinatal stress has been
defined as the presence of non-zero LPS in the patient record the day before the
recording, i.e. LPS > 0 , which means experience of any pain the day before
the recording.

According to the clinical protocol, EEG, ECG and SpO2 measurements were
recorded for at least 3 hours in three monitoring groups: the first measurement
took place around 5 days after birth (5days), while the second and the third
recording were respectively planned around 34 weeks postmenstrual age (PMA)
(34w) and in the week before discharge home. The last recording usually
consisted of a 24 hours polysomnography, therefore the last group was labeled
as PSG. Only one of the first two recordings was performed for infants born at
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Table 7.1: Summary of patient data demographics at different time points:
GA (gestational age), birth weight (in g), PMA (postmenstrual age) at EEG
and ECG recording, LPS (Leuven Pain Score). Data is reported as q50[q25-q75],
where q50 is the median and q25-q75 is the IQR.

5days (n=118) 34w (n=67) PSG (n=117)
GA(weeks) 31.14 [28.86-32.43] 28.86 [26.86-30.71] 30.29 [27.29-31.71]
Birth Weight (g) 1475 [1120-1725] 1140 [900-1480] 1225 [950-1540]
PMA(weeks) 32.14 [30-33.43] 34.14 [33.86-34.29] 38.43 [37.29-39.57]
LPS 1 [0-3] 0 [0-2] 0 [0-2]

33-34 weeks. In the course of their NICU stay, some infants were transferred to
level II units in hospitals closer to home. Therefore, not all infants have multiple
recordings and some LPS measures are missing. A total of 245 recordings had
corresponding pain scores available and were analyzed. A total of 39 patients
had three recordings with associated pain score. A set of 38 patients had two
recordings and the remaining 52 had 1 recording (39 ∗ 3 + 38 ∗ 2 + 52 = 245).
Table 7.1 summarizes the clinical characteristics of patients at each measuring
point. EEG set-up included nine monopolar electrodes (Fp1, Fp2 , C3, C4 ,
Cz, T3, T4, O1, O2) and the EEG signals were referenced to the electrode Cz.
The sampling frequencies for EEG, ECG and SpO2 were 256, 500 and 1 Hz,
respectively. They were monitored with the OSG system (OSG BVBA, Brussel).
The R-peaks of the ECG were detected via the R-DECO toolbox [172] and the
tachogram or HRV signal was derived as subsequent R-peak to R-peak intervals
(RRi).

7.2.3 Bradycardia detection and data preprocessing

Multiple studies have shown that hands-on-care and clinical handling can disrupt
the sleep cycle and induce oxygen desaturations and apneic spell [153],[16]. The
most threatening desaturations for the brain physiology and the development
of the infant are usually events concurrent with bradycardia, i.e. a sudden
drop in heart-rate, [205], [109]. Since Levy et al. showed that bradycardias,
apneas, hypoapneas and hypoxic events are linked to stress exposure [153] and
Porges et al. related bradycardias to fetal distress [212], the definition of apnea
prematurity was followed to detect cardiorespiratory events or desaturations in
the physiological signal [195]. Clinically relevant apneas were characterized by
RR elongation above 1.5 ∗RRi for at least 4 s, where RRi is the average of the
entire tachogram, with a variation of SpO2 greater than 10% with respect to
the baseline [122]. Consequently, hypoxic events were detected as events with
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concomitant variations of HRV and oxygen saturation, defined by increases
above 1.5∗RRi for more than 4 s and SpO2 desaturations exceeding the following
different thresholds: 3%, 5% and 10%. The saturation drops from the baseline
were detected according to [68] and the different thresholds were used to test
whether stress exposure induces more pronounced hypoxic events. Normally,
apneas are defined as breathing cessation for more than 20 secs. However, both
Barbeau et al. [16] and Levy et al. [153] have shown that events due to NICU
handling are not necessary full apneic spells, but mostly physiological events
like hypopneas and desaturations which last shortly and do not reach the level
of clinical alarm. Gee et al. [92] and Porges et al. [212] outlined the solely and
specific importance of bradycardias as a sign of dismaturity and distress of the
premature infant. In addition, the respiration signal in our study was frequently
distorted by artifacts and usually derived from the ECG for the younger patients.
Therefore, the event detection specifically targeted bradycardias, instead of
looking at the general breathing cessations. For each of those events, a window
of 3 minutes before and after each bradycardia peak was the starting interval
to develop a stress classifier. Specifically, a bradycardia peak is the moment of
maximal heart-rate drop or RR intervals elongation. For each epoch, the EEG
signal was filtered between [0.5-20] Hz and possible EOG artifacts were filtered
using independent component analysis.

7.2.4 Features extraction

Multiple features were extracted from the EEG, HRV, SpO2 from each
bradycardic spell to assess its relationship with stress. They were computed
at least in two moments: the period before the bradycardic event, i.e. from
the start of the window until the RRi exceeds 1.5 ∗ RRi threshold, and the
period after the bradycardic event, which goes from the moment RRi comes
back to stationarity until the end of the window. According to the different
methodologies, features were also computed during the bradycardia or during the
entire hypoxic spell. The computation within the bradycardia was not always
possible since indices like fractality require a larger number of samples that
were not available. Furthermore, the epoch durations were variable depending
on the length and the intensity of the bradycardic event. An overview of the
different features are reported in Table 7.2 and Table 7.3.

Cardiovascular analysis: HRV and SpO2 features

The tachogram’s reactivity was investigated with classical temporal and spectral
indices. Specifically, the power spectral density (PSD) of the tachogram was
computed with the continuous wavelet transform using analytical Morlet as
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mother wavelet (Section 3.1.1). The absolute powers in the high-frequency
(HF) and low-frequency (LF) range were derived as sum of the PSD bins in
the following frequency bands: HF = (0.2− 4] Hz and LF = (0.08− 0.2] Hz
[59]. The indices LF

HF and HF
LF+HF were used to assess the contribution of the

multiple autonomic branches [111]. Since the wavelet-approach derives the time-
frequency distribution of a signal, both the mean and the standard deviation
of those indices, together with the temporal mean and standard deviation of
the HRV, were derived as features in the epochs before, during and after each
bradycardic spell. Additionally, the heart-beat dynamics were assessed via
the Poincaré Plot (PP) analysis. The PP are two-dimensional scatter-plots
where RR(t) is plotted versus the lagged sample RR(t + τ). This graphical
representation is a simplification of Taken’s theorem to represent the phase
space in order to assess the nonlinear behaviour of the signal. The lag τ was
estimated as the first zero of the autocorrelation function of the signal and the
PP can then be described by the matrix X = [RR(t), RR(t+ τ)], where RR(t)
is a vectorial representation of the HRV time series of dimension R(N−τ)×1,
where N represents the length of the signal. Most commonly, the standard
deviations SD1 and SD2 of the minor and major axis of the cloud defined by
X are computed to represent the short and long-term RR variability. In this
study, the information in the PP was quantified via SD2 and SD1 as the first
two singular values of X and via the centroids Cx and Cy of the same matrix as
the column-wise mean of matrix X. The PP was represented and investigated
using the entire bradycardic window.

Similarly to HRV, temporal features, such as mean and standard deviation,
as well as the PP features were derived from SpO2. Concerning the epochs
for SpO2 features computation, the epoch before and after SpO2 dips were
considered, i.e. the epoch that starts from the beginning of the window until
SpO2 exceeds the considered threshold and the epoch that starts from the
moment that SpO2 goes back to stationarity until the end of the window.

Desaturation events and bradycardic spells never occur alone, especially when
driven by hands-on-care. The periodicity of both SpO2 dips and heart-rate can
be characterized by Phase Rectified Signal Averaging (PRSA), which searches
for all time points where the signal goes downward (or upward) in the 6 minute
segments [27]. Fragments of 120 s duration were extracted around each time
point, known as anchor point, and they were subsequently aligned and averaged.
From this average curve, the overall slope and the slope before and after each
anchor point were derived to describe the rate of increase or decrease, such as a
desaturation trend or bradycardia increase [27]. However, the computed average
rate is sensitive to the definition of the anchor points, which ultimately represent
an increase or decrease for a specific time window of length T according to the
properties of the signal. Therefore, multiple parameters T were investigated in
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the range [1, 5, 10, 20, 50, 100] s to define the best set of PRSA features .

Neurological analysis: EEG features and multivariate attributes

Pitson et al. showed how EEG arousals are related to SpO2 dips in respiratory
events due to obstructive sleep apneas [209]. Those arousals were defined as
an increase in the main carrier frequency of EEG in windows of 10s or more.
Furthermore, different authors showed swings in burst activity as a consequence
of HR variations in premature infants [204], [230]. The increase in discontinuity
and burst-like type of activity are known biomarkers for brain dismaturity or
pain elicitation [198], [78]. Therefore, multiple features were computed from
the EEG to describe the level of discontinuity in terms of slow-wave persistence,
regularity and lack of smoothness [198]. In addition, the concurrent variations of
heart-rate, SpO2 and EEG were investigated to assess whether they are related
to the stress load or not.

EEG time-frequency analysis

The cortical activity was analyzed both in the time and frequency domain. The
EEG power in the band δ = (0.5 − 4] Hz was computed via the continuous
wavelet transform, using the analytical Morlet as mother wavelet (Section 3.1.1).
The reason to focus on the δ band is two-fold. On the one hand, the δ band
represents the sensitive band to pain stimuli and contains the dominant frequency
of the neonatal EEG, which is the frequency with the highest power [78], [261],
[1]. On the other hand, this frequency band represents subcortical areas, such as
the thalamus, which are involved in stress management and autonomic control
of the nervous system [203]. Similarly to the cardiovascular variables, the mean
and the standard deviation for the EEG and the power in the δ band in each
channel was derived for the three epochs around the bradycardic peak.

Multifractality

As anticipated in section 3.1.3, a more discontinuous EEG signal is characterized
by higher regularity or self-similarity. Signals with such property are defined as
fractals or scale-free signals. These time series have long-exponentially decaying
autocorrelation functions (ACF) or a power-law spectrum, whose rates of decay
can be defined by the Hurst exponent (H), which assess the level of similarity
[71]. However, complex and discontinuous signals can vary in fractal properties
over time, i.e. the Hurst exponent and therefore the rate of ACF decay can differ
[121]. Wendt et al. proposed an efficient way to estimate the different fractal
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properties based on wavelet leaders [71]. Their method estimates the spectrum
of singularities D(h) (SS), which measures the different Hurst Exponents in the
signal and the associated fractal dimension [266].

The most interesting attributes of the singularity spectrum are the location of
the maximum and its width which are usually defined as c1, c2 [121]. According
to Jaffard [121], c1 is usually considered the main Hurst exponent (Hexp) of the
multifractal signal, while c2 is a variational index to represent the amount of
fractals inside the signal. Wendt reported further details of the methodology
and of the WLBFM toolbox implemented in MATLAB to estimate the fractal
parameters [266]. The parameters c1, c2 were estimated for each EEG channel
and the associated δ oscillations.

Multivariate analysis: Brain-heart interactions

The interaction among the cortical activity and the cardiovascular variables
can be estimated with the time-frequency coherence between the δ oscillations
derived with CWT, the HRV and the SpO2 [207]. In order to match the
temporal scale, all signals were resampled at 8 Hz. The continuous wavelet
coherence Cxi↔xj (t, f) was then computed between the signal xi and xj , as
described in section 3.2.1. Specifically, the coupling was derived as the maximum
absolute imaginary part of Cxi↔xj in the band of interest and the statistical
validity of each coupling was then tested with amplitude adjusted Fourier
transform (AAFT) surrogates (Section 3.2.1, [149]). The signal xi can be the
delta oscillation of an EEG channel, HRV or the SpO2. The wavelet transform
was computed with analytic Morlet as mother wavelet and the coherence was
investigated in the very-low-frequency band V LF = (0.033− 0.08] Hz in the 5
days group and the low-frequency band LF = [0.08− 0.2] Hz in the 34w group
and the PSG group. As discussed in previous studies [148], [111], this shift
in frequency band is due to undergoing maturation of the autonomic nervous
system.

However, due to the large number of channels and exponential number of
associations, the pairwise coupling risks to produce collinear features for stress
discrimination. Therefore, Cxi↔xj were interpreted as entries of adjacency
matrix A = Aij of a weighted undirected graph and a set of topological indices,
such as the path length, the clustering coefficient, the eccentricity, and a network
resilience metric, the number of superfluous connections nsup, were computed,
as discussed in section 3.2.4 and [38],[43].

In this study, graph theory was applied as follows: EEG delta oscillations
(8 channels), HRV and SpO2 were involved in the analysis as nodes setting
the number M of processes to 10. Since the interaction estimation is based on
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wavelet coherence, the adjacency matrix was computed for each time sample and
therefore it was possible to derive the charts of the different topological indices.
The average and the standard deviation of each topological feature was computed
before, during and after each bradycardic spell. In order to test the contribution
of a specific modality or signal to the stress classification, graph theory indices
were not only computed for the entire set of processes, but we used also partitions
of the adjacency matrix Aij . Specifically, we considered connections only related
to EEG channels (EEG-EEG), the connections between EEG channels and SpO2
(EEG-SpO2), the connections between EEG channels and RRi (EEG-RRi) and
the entire set of connections (EEG-SpO2-RRi), as reported in Table 7.3. For
each of those partitions, the described list of topological indices was computed.

7.2.5 Bradycardia-based Classification

A customized software tool was developed with MATLAB libraries to detect
whether each bradycardic event belonged to a patient with or without stress
burden. In summary, the following groups of features were derived for each
hypoxic event:

• Temporal and periodicity features: 14 features in total for HRV, 14 features
for SpO2 and 16 features for the EEG

• Spectral features for both HRV and EEG: 8 features for HRV and 16
features for EEG

• Nonlinear features: 4 features for HRV, 4 features for SpO2 and 32 features
for EEG

• Brain-heart connectivity topological indices: 168 features in total for HRV,
EEG and SpO2

A complete overview is reported in Table 7.2 and Table 7.3. Given the fact
that features were derived for three epochs (before, during and after each
bradycardia), the total number of extracted features was 748.

The power-features were log-transformed. The study investigated whether there
was any association between those features and the bradycardic spell in a patient
with a stress exposure in the NICU. As mentioned earlier, the presence of stress
was defined as experience of pain the day before the recording (LPS > 0).
However, Gruss et al. have shown that more intense pain can be discriminated
in an easier way [102]. On top of that, there is no clear consensus on the level of
desaturation that can be considered threating for premature infants [122], [153],
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[210]. Therefore, different levels of hypoxia were tested in the classification, i.e.
SpO2 > 3%, SpO2 > 5%, SpO2 > 10%.

The objective of the classification was to discriminate whether a bradycardic
event belonged to a patient with or without stress. After testing different
classification algorithms such as support vector machines (SVMs) and linear
discriminant analysis (LDA), a classifier based on subspace ensemble with LDA
has been designed to separate bradycardic spell in two groups [108]. Subspace
LDA is an ensemble method like random forest, where the bagging process
(random subsampling of the training set) is performed together with a random
subsampling of the features to find the best feature subsets to separate the data
(see Section 3.4.5 and [108]). The clear advantage is to span a greater number
of features and allow the model to tune for the best subset. The choice of the
subspace LDA was based on generalization and simplicity. Due to the great
variety of features and the initial filter for features selection based on linear
separation (see below), the comparison among different classification methods
prioritized the models obtained with subspace LDA. The model was tested
according to a leave-one-patient-out (LOPO) scheme for each monitoring group
(5days, 34w, PSG), which meant that all bradycardic event belonging to one
patient were put in the test set. The following set of performance indices were
derived each monitoring group: the area under the curve (AUC) and Cohen’s
kappa between machine learning labels and the clinical labels (Section 3.4.6).
It is important to remind the only one set of indices was obtained for each
classifier since they were obtained by pooling all test sets of the different patients
together. The classification hyperparameters of the subspace LDA, which are
the γ parameter of the discriminant function and the number of ensemble
cycles, were tuned via a 10-fold cross-validation in the training set. Like any
random-forest family or ensemble method, the subspace LDA has one learner
(normally a decision tree, but in this case linear discriminant function) and
a number of cycles to tune the classifier with the bagging process [108]. The
number of cycles represents also the number of "trees" in the "forest". In a
subspace LDA method, the optimization focuses on the γ parameter of the
discriminant functions of the different trees and the number of cycles necessary
to reach the minimal classification error on the validation set. The comparison
metrics to select classification methods were the AUC and the kappa-scores,
which were the highest with subspace LDA.

Given that the number of features should be below one tenth of the training
dataset, the subspace of features has been restricted to 1/10 (one-tenth) of
the data as a generic rule of thumb to avoid overfitting [170]. However, before
tuning of the model, features were further reduced before the subspace ensemble
algorithm was applied. The considered attributes had intra-feature correlation
below 90% and the highest F-scores. The F-score is a simple measure to assess
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Table 7.2: Overview of the univariate features derived from the physiological
signal in the study. For each signal (HRV, SpO2, EEG), the temporal, spectral
and nonlinear attributes are reported. The total count for HRV is 26: 2 temporal
features, 8 spectral features, 4 nonlinear features from the Poincaré plot (PP)
and 12 PRSA features. The total count for SpO2 is 18: 2 temporal features,
4 nonlinear features and 12 PRSA features. The total count for EEG is 64: 2
temporal features, 2 spectral features and 4 fractal features repeated for each
channel.RR and P (δ) respectively represent the tachogram or HRV and the
EEG power in the δ band. µ and σ stand for mean and standard deviation.
LF and HF represent the high and low-frequency bands of HRV. Hexp and
c2 are the main Hurst exponent and the width of the singularity spectrum
derived with the multifractality framework. Cxy and SD12 are the PP features.
SlopeOV (T ) represents the overall PRSA slope from the start of its window,
while slopeAP (T ) is the slope around each anchor point. Six different window
lengths T were selected to define each anchor point: [1, 5, 10, 20, 50, 100] s.

Temporal Spectral Nonlinear
HRV µRR, σRR, µHF , σHF , µLF , σLF Cx, Cy

SlopeOV (T ), SlopeAP (T ) µHFnu , σHFnu , µ LF
HF

, σ LF
HF

SD1, SD2

SpO2 µSpO2 , σSpO2 , Cx, Cy
SlopeOV (T ), SlopeAP (T ) SD1, SD2

EEG µEEG, σEEG, µP (δ), σP (δ) Hexp,EEG, Hexp,P (δ)
c2,EEG, c2,P (δ)

the discrimination between the positive and the negative class. It is computed as
the ratio between the separation between positive and negative class (intra-class
variability) and the separation within each class (inter-class variability). The
details of the procedure are reported here [47]. In addition, the features were
corrected by the baseline effect of age in case subject’s PMA was a covariate of
the feature of interest (i.e. significant Pearson correlation or p < 0.05).

7.3 Results

The results for the bradycardia-based stress classification are reported for the
three monitoring groups in Figure 7.1. The AUC and kappa scores are reported
in function of the desaturation threshold used to define which events should
have been included in the classifier. Each color represent a threshold: blue for
desaturations higher than 3%, yellow for desaturations higher than 5% and red
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Table 7.3: Overview of the multivariate features derived from the different
monitoring groups and the possible interaction combinations among the different
modalities (EEG-SpO2, EEG-RRi, EEG-EEG, EEG-SpO2-RRi). For 5days,
the interaction was derived specifically for the VLF band, while the interaction
for other two groups was assessed in LF band. The set of attributes for each
monitoring group is 84: 21 features for EEG-SpO2, 21 features for EEG-RRi,
19 for EEG-EEG, 23 features for EEG-SpO2-RRi.The clustering coefficient
(Clustc) and the eccentricity (Ecc) are node-dependent features, which explain
the variation in numbers for each interaction group. The actual count rises to
168 since both mean and standard deviation are considered. nsup is the number
of superfluous connections.The label Efficiency represents the global efficiency
of the network. V LF and LF represent the very-low and low-frequency bands
of HRV.

EEG-SpO2 EEG-RRi EEG-EEG EEG-SpO2-RRi
5days Pathlength(V LF ), Pathlength(V LF ), Pathlength(V LF ), Pathlength(V LF ),

Efficiency(V LF ), Efficiency(V LF ), Efficiency(V LF ), Efficiency(V LF ),
Clustc,node(V LF ), Clustc,node(V LF ), Clustc,node(V LF ), Clustc,node(V LF ),
Eccnode(V LF ), Eccnode(V LF ), Eccnode(V LF ), Eccnode(V LF ),
nsup(V LF ) nsup(V LF ) nsup(V LF ) nsup(V LF )

34w, Pathlength(LF ), Pathlength(LF ), Pathlength(LF ), Pathlength(LF ),
PSG Efficiency(LF ), Efficiency(LF ), Efficiency(LF ), Efficiency(LF ),

Clustc,node(LF ), Clustc,node(LF ), Clustc,node(LF ), Clustc,node(LF ),
Eccnode(LF ), Eccnode(LF ), Eccnode(V LF ), Eccnode(LF ),
nsup(LF ) nsup(LF ) nsup(LF ) nsup(LF )

for desaturations higher than 10%. The results suggest a moderate association
between the bradycardia features and the clinical labels: the AUC lies in the
range [0.80-0.96] and the kappa score lies in the range [0.41-0.80]. The SpO2
threshold for the desaturation seems to have a mild effect on classification: only
the PSG group reports an increasing Kappa score for higher threshold.

The effect of the threshold is also reported in Figure 7.2, where the classification
results are shown based on the different feature groups. The left panel shows
the AUC for a 3% desaturation threshold, while the right panel shows results
for the 10% threshold. The feature groups are respectively indicated with the
labels EEG, HR – SpO2 and BH for the EEG features, the cardiorespiratory
features and the brain-heart features. In the 5 days group and 34w group,
either the brain-heart features or the EEG features outperform the HR-SpO2
group. In addition, the desaturation threshold seems to increase the AUC for
the brain-related attributes. On the contrary, the performance seems to be
comparable for all different groups at PSG and the effect of the threshold is
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equally beneficial for the three groups.

In order to give an idea of the selected features or the most discriminative
information for stress classification, Figure 7.3, 7.4, 7.5 reported either the
behavior of the selected time-series or the boxplots of the most-discriminative
features in epochs before, during and after each bradycardia for the three
different monitoring groups. Figure 7.3 reports the desaturation charts for
the 5days group with LPS > 0 (in blue) and LPS = 0 (in green) on the left
panel, while the Hurst regularity is reported in the period before and after each
bradycardia for a 10% threshold on SpO2. The Hurst exponent shows a higher
regularity in case of stress and the SpO2 charts show higher desaturation in
case of stress. Figure 7.4 reports the desaturation charts and the path length
among EEG channels and HRV in the LF band for the 34w group with a 10%
threshold on SpO2. Results reveal a higher desaturation in case of stress as well
as a stronger association between the tachogram and the delta-oscillations of
the EEG. It is important to remember that the lower the path length, the higher
the connectivity. Figure 7.5 reports the normalized power in the HF band both
as time-series and as boxplots for the PSG group with a 10% threshold on SpO2.
The figure does not only suggest a higher and more intense bradycardic spell,
but also a more variable bradycardia.

Figure 7.1: Results of the bradycardia-based classification in three main
datasets. The three colors represent different level of desaturation to consider
the bradycardic event in the stress classification. The left panel displays the
area under the curve in the three monitoring groups, while the right reports
Cohen’s kappa.
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Figure 7.2: Results of the bradycardia-based classification in three main
datasets. The figure here reports the results based on the different feature
groups. The left panel reports the area under the curve for desaturations greater
than 3%, while the right panel report the results for desaturation greater than
10%. The three colors represent different feature groups: EEG stands for EEG
features, HR-SpO2 represent the cardiovascular features and B-H is related to
the brain-heart connectivity.

Figure 7.3: The desaturation levels and the EEG regularity are more pronounced
in case of stress. The left panel reports the SpO2 during the bradycardic spell
and the right panel shows the boxplot for the Hurst exponent of channel C3 for
the period before and after each bradycardia. The data are reported for the
5days group. All the events with a desaturation greater than 10% were included
in this figure. The p-values in the boxplot are derived via the Kruskal-Wallis
test.
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Figure 7.4: The desaturation levels and the connectivity between delta
oscillations and the heart-rate are more pronounced in case of stress. The
left panel reports the SpO2 during the bradycardic spell and the right panel
shows the path length derived from the network with EEG channels and the
HRV. It is important to remind that the lower the path length, the higher the
connectivity. The data are reported for the 34w group. All the events with a
desaturation greater than 10% were included in this figure.

Figure 7.5: The intensity of bradycardias and the parasympathetic activity
are more pronounced in case of stress. The left panel reports the normalized
HRV power in the HF band and the right panel shows the normalized power
in boxplots before, during and after each bradycardic event. The data are
reported for the PSG group. All the events with a desaturation greater than
10% were included in this figure. The p-values in the boxplot are derived via
the Kruskal-Wallis test.

7.4 Discussion

In this chapter, the relationship between bradycardic spells and stress burden in
premature infants was examined and it suggests that stress load can enhance the
desaturation and the bradycardic effects. Two novel findings can be reported.
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First, this research supports the feasibility of the automatic stress classification
based on the physiological reactivity in bradycardias. Levy et al. showed how
routine contact in the NICU could induce respiratory events, such as apneas and
hypoapneas, and long oxygen desaturations [153]. This result was confirmed
by the classification performance reported in Figure 7.1 and 7.2 and the
desaturation charts displayed in Figure 7.4 and 7.5. The definition of routine
handling by Levy et al. follows the notion of stress exposure or procedural
pain by Grunau et al. [100], who defines perinatal stress as accumulation
of pain and noxious stimuli. The experienced hands-on-care and pain might
trigger a completely different physiological reactivity which could induce a
greater desaturation or respiratory burden, as also reported by Levy et al. [153].
Interestingly, the results showed a moderate association between the features
and the classification outcome (with kappa score between 0.3 and 0.6 for the
most of the groups). Although similar studies that perform classification of
pain stimuli based on physiological information show strong association between
features and the outcome [41],[102],[170], it is important to remind that the
study protocol does not elicit any pain in the patient. And yet, it shows
that babies experiencing pain the day before the measurement react differently
to stress as shown by the stress calculator but also by looking at individual
parameters like the desaturation chart, Hurst exponent of the EEG and the
HRV in the LF and HF bands.

Second, hypoxic events can impact brain homeostasis. Sleep fragmentation
and sleepiness might result from either hands-on-care (especially in infants,
[153]) or from desaturation events (especially in apneic patients, [209]).
Sleep fragmentation is able to impact the daily behavior of both adult and
NICU patients and is commonly considered a category of pain scoring [100].
Interestingly, Pitson et al. did not only show that the sleepiness and desaturation
loads are related in apneic patients, but SpO2 appears to be related to heart-
rate and EEG arousals, intended as increases in frequency [209]. These EEG
arousals can be seen in the increase of EEG regularity (Figure 7.3), while the
relationships among SpO2 dips, heart-rate and EEG arousals might support the
higher connectivity between EEG and HRV in the 34 weeks group (Figure 7.4).
In adults, those physiological fingerprints might be the sign of an altered
cardiovascular control [127] or disrupted emotional regulation by the prefrontal
cortex [29]. Based on these results, one might speculate a possible impact on the
brain development and the autonomic regulation development of those infants.
However, the exact mechanisms responsible for those events remain still unclear
even in adults and further research is still required.

The increase of EEG regularity and desaturation is normally a feature of the first
two monitoring groups (Figure 7.3 and 7.4), while the PSG group is characterized
by a greater vagal activity in case of stress exposure (Figure 7.5). Furthermore,
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Figure 7.1 and Figure 7.2 show better classification performance for the PSG
data. One might speculate that the effect of stress on the patients’ physiology
might be easier to discriminate due to a lower apnea - bradycardia burden with
increasing age and the overall maturation of the ANS [58]. The autonomic
development can also explain the increase in performance of cardiovascular
features (HR− SPO2) at PSG, while the dominant features are EEG and BH
in the first two recording groups (Figure 7.2, Second Panel). It seems that
stress initiates a desaturation effect and regular EEG patterns in the first days
of life, while the stress-related HRV patterns only arise at full-term age with
the maturation of ANS. It is possible that regular EEG patterns are especially
present at younger age because of enhanced hypoxia by hands-on-care [153]
or a more dysmature EEG. Hypercapnia and reduced cerebral blood flow are
common factors to enhance discontinuity of the cerebral activity [264],[267].
However, the discontinuous EEG might also be triggered by the cumulated
pain of the NICU, which increases neonatal burst activity [236]. In general,
dysmature EEG patterns are especially present at younger age and any EEG
disruption might be the consequence of subtle effects that can impact the
later-life outcome [263]. This relationship between regularity and dysmaturity
might further support the hypothesis of an effect on brain development due to
enhanced desaturation and exposure to stress.

Similarly to Lin et al. [155], the interaction between the EEG delta waves
showed a strong positive correlation, which increases during the bradycardia
spells and under stress exposure (Figure 7.4). This stronger positive interaction
between the slow rhythm of the EEG and the HRV is normally concomitant
with a vanishing negative modulation when a sleep state shifts from deep sleep
to wake [23],[155]. This sudden increase in connectivity might indeed be caused
due to an underdeveloped parasympathetic control, and the hypoxia event
might be considered as a sudden shift towards an awake state. Apneas and
other respiratory events are known to lead to sleep fragmentation [153] and
therefore this increase in connectivity might be a consequence of this sleep
disruption. Bartsch et al. [23] showed that awake and REM states exhibit
stronger physiological connectivity than deep sleep. Especially, the brain-
heart interaction increases during REM and awake [158]. It is possible that
the combination of bradycardia and stress exposure might lead the subject
to a condition closer to an awake state, with an overall increase of network
connectivity.

However, this study has limitations, which were already considered in the clinical
studies by Levy et al. [153] and Janvier et al. [122]. Bradycardias and apneas
are physiological events, whose frequency and severity vary throughout the
hospitalization [122]. Therefore, there could not be enough events to classify
stress levels for the late preterm, since there are fewer bradycardias and apneas
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at full-term age. Moreover, the definition of stress or hands-on-care might also
influence the design of the classification. Although Levy et al. pointed out
that the clinical handling initiates apneas or hypoapneas, technical contact was
also likely to induce desaturations [153]. This study relies on a specific pain
scale (LPS), but future research could involve different multidimensional pain
scales to have a more in-depth view of the preterm physiology under stress
[125]. The definition of bradycardias or the physiological events of interest
might also impact the current analysis. Levy et al. pointed out the different
consequences of clinical handling, which does not only include apneas, but also
sleep fragmentations, hypoapneas and general desaturation events [153]. Gee et
al. had a more generic approach, which include all possible bradycardias in his
prediction analysis [92]. Specifically, Gee et al. considered any heart-rate drops
for more than 1.2 sec as bradycardic event [92], while Paolillo focused only on
bradycardias that last for more than 4 sec and were concurrent to desaturation
events [195]. Based on the fact that the most dangerous de-oxygenation happens
with bradycardias [205], the pursued strategy of this investigation focused on
events that looked both to desaturations and bradycardias, but it might be
possible to reconsider the entire analysis to have only bradycardias. However,
the long-term studies on stress aim to quantify the impact on the development
of early-life experiences in the NICU and the specific effect of hypoxia was
proven detrimental for the development outcome of preterm patients [122]. This
study might also be complemented by a longitudinal analysis, using repeated
measurement ANOVA or a balanced linear mixed-effect model. However, it
presents an event-based dataset, where the number of bradycardias vary for
each patient and recording time. The number of bradycardias normally reduces
with the development of the infant [58] and the uneven distribution of those
events risk to make any within-subject analysis invalid and unrevealing. This is
also the reason why the three datasets were kept separated instead of merging
them in one single cluster of data. The unbalance amount of bradycardias would
have favored age as a predominant factor in the stress detection, since most
of the bradycardias are concentrated in the first days of life [58]. Therefore, a
future study should be designed to monitor bradycardic spell in a longitudinal
sense in order to assess whether stress has a persistent effect over the different
recordings.

Future steps of this analysis might include a further proof of the development
delays in case of apnea load and stress. The multiple attributes derived in this
study might be included in a regression model to assess the differences in Bayley
scores or other clinical scales [122]. Furthermore, the same methodology can be
applied to assess the effect of parents-infant interaction with scales, such as the
emotional availability scale [272]. It is important to highlight that stress can
be the cause of the physiological instability, but it can also be that the most
fragile infants tend to overreact with hypoxic abnormalities. Therefore, future
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studies should also focus on causality to establish if stress is the source of the
physiological instability. The final goal of the perinatal stress quantification
should not simply be a modelling based on physiology, but it should help
ultimately to understand the impact of stress on development. Therefore, it
is important to show how stress and physiological abnormalities derived from
stress might impact the development in terms of Bayley score [101], [70].

In a nutshell, stress seems to induce more intense desaturations, apneic
and bradycardic events and cortical activation, which can be the trigger of
neurodevelopment impairment. Janvier et al. have shown how apnea burden can
impact the patients’ development in terms of cognitive and motor outcome [122].
Pichler et al. highlighted how long bradycardias can induce severe cerebral
deoxygenation in premature infants [205] and Horne et al. stressed that the
cumulated effect of apneas has a long-term negative impact on the cerebral
oxygenation of the patients at 5-6 months corrected age [109]. Therefore,
an exacerbation of respiratory or hypoxic events due to patient handling or
procedural pain can ultimately affect the development of the preterm infants.
This analysis shows how perinatal stress is associated to cardiorespiratory
abnormalities and other physiological instabilities. These findings might provide
a possible link between stress and the maturation of premature infants and
explain how stress-related physiology can influence the development outcome of
those infants.

7.5 Summary

In this chapter, we investigated the relationship between stress experience
and bradycardias in preterm infants by means of physiological data. Two
main findings have been observed. Larger desaturation levels are associated
to stress experience. Larger brain-heart synchrony and EEG regularity are
observed during hypoxic events linked to procedural pain. The results show that
an automatic stress discrimination in premature infants can be implemented
assessing the information of the bradycardic spells. In addition, a possible
link between stress and neurodevelopment can be envisaged. The enhanced
autonomic and hypoxic events we found in stressed infants might impact
their frontal cortex activity, which could ultimately affect their developmental
outcome. Future research might be required to test this hypothesis.



Chapter 8

A perinatal stress calculator
for the neonatal intensive
care unit: an unobtrusive
approach

This chapter has been published as Lavanga M., Smets L., Bollen B., Jansen,
K., Ortibus E., Van Huffel S., Naulaers G., Caicedo A. (2020). "A perinatal
stress calculator for the neonatal intensive care unit: an unobtrusive approach".
Physiological Measurement, 1–26. Lavanga M. has co-developed the methodology,
conducted the experiments and has written the manuscript. Compared to the
publication, minor textual and notational changes have been implemented for
better integration in this thesis.

As anticipated in chapter 7, an early experience of pain and stress can affect the
neurodevelopment of the preterm infant, but an automated method to quantify
the procedural pain or perinatal stress in premature patients does not exist. In
this study, an unobtrusive method based on the analysis of physiological signals
to detect stress is presented. Without any pain elicitation protocols, features
were extracted from the EEG and heart-rate variability in both quiet and non-
quiet sleep segments to develop a stress classifier. The reported results suggest
pain and stress processing in preterm neonates might cause a dysmature EEG.
Therefore, the automatic monitoring of EEG and HRV can be helpful to assess
stress load in premature patients via supervised classification strategies.
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8.1 Introduction

Early experience of pain and stress in premature infants has been under greater
scrutiny by the clinical investigators due to the long-term effects on development
[100]. Concerns about the impact of infant pain on neurodevelopment have
been raised in the 80s [201]. During their stay in the neonatal intensive care
unit (NICU), infants undergo different procedures and care which can generate
a cascade of behavioral, physiological and hormonal responses [100]. This
accumulation of painful and/or stressful procedures can lead to higher stress,
which is defined as perinatal stress. Although procedural pain is not necessarily
associated to background stress, Ranger et al. [215] pointed out that pain
and stress cannot be discriminated in clinical practice and Jones et al. [126]
showed that there is an increase in pain reactivity in case of high exposure of
background stress. Due to the possible developmental implications and the
worse outcomes of premature infants, clinicians are interested to assess the effect
of early-life stress during the patient’s stay in the NICU and later on in their
life. It is important to remember that stress is a broader concept than pain only.
However, the pain-related stress is normally investigated since mainly validated
pain scales are used as measurements. Therefore, stress or pain experience will
be both used as synonyms of perinatal stress.

The growing interest in perinatal stress has been shown in a variety of recent
studies. Brummelte et al. found that perinatal stress can affect the fractal
anisotropy of the subcortical white matter during infant’s neurodevelopment
[42]. Cong et al. showed how kangaroo care (KC) can alleviate the effect of
post-stimulus experience at the autonomic level after heel prick procedure [52].
Similarly, studies that investigated EEG recordings during pain exposure relied
on heel lance procedures and inoculation to assess brain synchronization in
nociceptive processing, as reported in [237], [235]. Specifically, the authors
investigated differences between tactile and noxious stimuli in evoked related
potentials (ERPs) on the one hand and the involvement of autonomic circuitry
in pain processing on the other hand. Furthermore, handling of patients induces
also sleep disturbances that can generate long bradycardias and apneas [16].

However, there is no automated method to classify exposure to stress in
premature infants based on physiological signal background. What is more
common is pain-patterns classification based on biopotentials information in
the adult population. Misra et al. [170] developed a SVM model to classify
low-pain and high-pain using EEG recordings in adults. In their study, they
have shown that θ and γ power increase in the prefrontal region and β power in
the sensorimotor region contralateral to the stimulus, which can predict the pain
patterns with an accuracy of 89.58%. Vijayakumar et al. [257] used a wavelet-
transform of EEG to derive power in multiple frequency bands and discriminated
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multiple pain stimuli in adults by means of random forest classifiers. Other
modalities have also been investigated to automatically classify pain patterns
in the adult population. Gruss et al. [102] investigated patterns in EMG
under thermal stimulation. A noteworthy aspect was not just the automatic
approach to discriminate between baseline and pain patterns, but also the
reported accuracy in function of the pain intensity. Another example comes
from Brown et al. who used fMRI data to develop a SVM model to determine
the absence and presence of pain during heat stimuli [41].

Besides machine learning approaches, the physiological reaction to pain has
been investigated by means of the autonomic response or EEG connectivity
patterns in adults. Loggia et al. [159] showed that the magnitude of the
heart-rate and skin-conductance (SC) sweeps increase with increasing thermal
pain stimulation. Functional cortical connectivity can also vary according to
stress or pain disorders, as reported by De Tommaso et al. [63] and Imperatori
et al. [115]. Migraine patients tend to have a greater connectivity at resting
state than controls in laser-induced pain experiments [63]. In addition, post-
traumatic stress disorder seems to lead to a higher power in the θ band and
higher connectivity in the α band [115].

The objective of this study is to develop a classification model to detect the
presence of stress exposure in premature infants. A binary model to discriminate
between stress and low-stress patterns was derived by multiple features extracted
for background physiological activity. As mentioned earlier, perinatal stress is
here intended as pain-related stress. Since there is no clear definition of stress in
the NICU and there is no consensus on the level under which the effect can be
considered negligible or low, different levels of accumulation of procedural pain
have been investigated to define stress. The final goal is to demonstrate if stress
is associated to any specific abnormalities in the physiological signals. The
detection of functional disruptions is of paramount importance to understand if
stress can impact the future development of infants via physiological instabilities.

8.2 Materials and methods

8.2.1 Patient sample

Data from preterm infants were collected as part of the Resilience Study,
which has been carried out in the Neonatal Intensive Care Unit (NICU) of the
University Hospitals Leuven, Belgium. A total of 136 preterm infants born
before 34 weeks gestational age (GA) and/or with a birth weight less than
1500 g was included in the cohort from July 2016 to July 2018. The exclusion
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criteria and information related to the research protocol or the inform consent
are reported in Section 1.2.

8.2.2 Data acquisition

Patients’ pain levels were daily recorded at the cot-side. Pain scores were
assessed using the Leuven Pain Scale (LPS), a validated multidimensional pain
scale for preterm infants [7], [6]. The LPS assigns scores (0,1 and 2) to seven
categories (facial expression, crying, irritability, drowsiness, muscle tension,
comfort, and heart rate). Thus, LPS scores vary between 0 and 14, with
higher scores corresponding to higher pain intensity. A score of 4 is regarded
as the critical threshold for distinguishing a comfortable condition from an
uncomfortable one (not pain-free and/or acute pain). The inter-rater reliability
was 0.88 [7],[6]. Pain assessment was done routinely by bed-side nurses that
were familiar with the LPS and noted it in the patient’s electronic medical
file. As part of the clinical routine, LPS was scored hourly in preterm infants
receiving intensive care, and every three hours in infants receiving intermediate
care.

Following the definition of stress exposure, stress was regarded as the experienced
pain in the day before the experimental recording, that is the presence of non-
zero LPS in the patient record. As already mentioned, a common threshold for
uncomfortable conditions for LPS is 4. However, in line with [102], multiple
thresholds for experience of pain in the day before the recording were tested:
LPS > 0, LPS > 1, LPS > 4 to define a patient under stress conditions.
The main assumption is that a greater threshold should lead to a better stress
classification performance.

EEG and ECG measurements were simultaneously measured at three different
time points for at least 3 hours. Importantly, infants had to be clinically stable
at the time of recording. The first recording took place around 5 days after birth
(5days). The second recording was planned around 34 weeks postmenstrual
age (PMA) (34w). For infants born at 33-34 weeks GA, only one of the two
recordings from birth was performed. A last recording consisted of a 24-hour
polysomnography (PSG) that was conducted in the week before discharge
home. The parents only consented for the polysomnography and opted out for
additional EEG measurements. In the course of their NICU stay, some infants
were transferred to level II units in hospitals closer to home. Therefore, not all
infants have multiple recordings and some LPS measures are missing. However,
we strived to readmit infants to our hospital for the PSG measurement. A total
of 245 recordings had corresponding pain scores available and were analyzed.
Table 8.1 summarizes the clinical characteristics of patients at each measuring
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Table 8.1: Summary of patient data set at different time points: GA (gestational
age), birth weight (in g), PMA (postmenstrual age) at EEG and ECG recording.
Data are median [interquartile range].

5days (n=118) 34w (n=67) PSG (n=117)
GA(weeks) 31.14 [28.86-32.43] 28.86 [26.86-30.71] 30.29 [27.29-31.71]
Birth Weight (g) 1475 [1120-1725] 1140 [900-1480] 1225 [950-1540]
PMA(weeks) 32.14 [30-33.43] 34.14 [33.86-34.29] 38.43 [37.29-39.57]
LPS 1 [0-3] 0 [0-2] 0 [0-2]

point. EEG data were collected according to the 10-20 system using nine
monopolar electrodes (Fp1, Fp2 , C3, C4 , Cz, T3, T4, O1, O2) and monitored
with the OSG system (OSG BVBA, Brussel). Each EEG signal was referenced
to Cz, which was then excluded from further analysis, leaving a total amount
of 8 channels. ECG was then used to derive the tachogram or HRV signal as
subsequent R-peak to R-peak intervals (RRi). The R-DECO toolbox [172] was
used for R-peaks detection.

8.2.3 Preprocessing and sleep-stage analysis

EEG was band-pass filtered between 0.5 and 20 Hz and independent component
analysis was used to remove EOG artifacts. To determine whether the channels
were contaminated by movement-related or non-cortical artifacts, multiple
criteria were applied on a window-basis in the feature extraction step. Criteria
were as follows: standard deviation below 50 µV , absolute difference sample-to-
sample below 50 µV and absolute amplitude below 200 µV [116]. If more than
4 channels had an artifact in a window, that window was excluded.

In order to compensate the effect of premature ventricular contractions, the
RR intervals were corrected as discussed in [172]. In addition, the R-peak
locations were also used to derive the modulation signal m(t) via the integral
pulse frequency modulation (IPFM) model, which also accounts for premature
contractions [15].

In order to assess whether sleep-wake ciclicity can influence stress classification,
sleep states were automatically derived from the EEG recordings. Sleep is
characterized by the development of behavorial states with the maturation
of the infant and can be divided in quiet-sleep, active sleep and awake [8].
Generally, the EEG signal is relatively more discontinuous during quiet sleep,
while the other two states present a more continuous tracing as well as a higher
variability of the cardiorespiratory pattern and more body movements [66],[64].
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Most of the data-driven algorithms focus on the detection of QS, while the
other two states are normally merged in one single state defined as non-quiet
sleep. The probability of Quiet Sleep (QS) was derived from the EEG signal
with 2 data-driven approaches: a Convolutional Neural Network (CNN) model
by [10] and the CLASS algorithm reported in [206]. These two methodologies
generate a profile for QS occurrence from the full-channel EEG activity, which
was used to derive two 20 minutes window, one associated to QS and the other
to non-quiet sleep information (nQS). Each of the window was respectively
located around the maximum or the minimum of the probability profile for QS
and nQS, considering epoch 10 minutes before and after each prominence.

8.2.4 Univariate features extraction

Multiple features were extracted on a single channel basis. These attributes span
from the classical spectral analysis to more refined nonlinear approaches and
are meant to describe the presence of dysmature EEG and HRV. Following the
definition by Pavlidis et al. [196], a dysmature EEG is generally characterized
by discontinuity, persistence of slow-waves and general lack of smoothness,
while a HRV of a dysmature neurovegetative system is characterized by lower
complexity and a prominent slow-wave baseline. Different studies showed that
pain elicitation can generate burst-type activity in premature infants [255] and
the patients that stay longer inside the NICU are the candidates to have a greater
negative impact on the neurodevelopment [100]. Therefore, the relationship
among dysmature EEG, dysmature HRV and stress can be investigated. In the
next section, a general overview of the algorithm to derive those features will
be presented.

Power features

The power spectral density of the tachogram was computed with both the Welch-
periodogram and the continuous wavelet transform (see Section 3.1.1). For the
periodogram, 70% was chosen as overlap between windows, while analytical
Morlet was picked as the mother wavelet for the wavelet transform [39]. In case
of EEG, the power was only computed using the Welch Periodogram for the
following frequency bands: δ1 = (0.5− 2] Hz, δ2 = (2− 4] Hz, θ = (4− 8] Hz,
α = (8 − 16] Hz and β = (16 − 20] Hz. The power-features were computed
in non-overlapping windows of 30 sec and 4 sec subwindows and it was grand-
averaged along QS or nQS channel wise [265], [96].

In case of HRV, the absolute powers of high-frequency (HF), low-frequency (LF)
and very-low frequency band (VLF) were computed as sum of the PSD bins



MATERIALS AND METHODS 177

in the following frequency bands: HF = (0.2− 4] Hz, LF = (0.08− 0.2] Hz,
V LF = (0.0033− 0.08] Hz [59], which slightly differs from the frequency bands
definition reported in [46]. The relative power indices were also derived as V LF

LF

, LFHF ,
LF

LF+V LF ,
LF

HF+LF . Both, the modulated signal m(t) and the resampled
HRV, were used for this analysis. The spectral density was computed in QS
and nQS epochs using the entire 20 minutes [71],[2]. The Welch periodogram
subwindow was set to 5 minutes. In case of the wavelet transform, the time-
frequency values were then averaged in both sleep epochs.

Multifractality

As discussed in Section 2.4.1 and in Section 2.4.2, a dysmature EEG is a
more discontinuous signal and both dysmature EEG and dysmature HRV
are characterized by slow-wave persistence. This type of pattern is normally
characterized by a lower entropy and higher regularity, due to its higher
predictability or memory-persistence. As shown in Chapter 5 and Chapter 7,
regular or discontinuous signals might have multiple exponents to control the
degree of regularity over time (multifractal signals). An efficient way to estimate
the Hurst exponent H and the associated spectrum of singularities D(h) is
based on the wavelet transform (Section 3.1.3). The most important parameters
to describe D(h) are the c1,c2,c3 parameters, which respectively represent the
location of the maximum or the main Hurst exponent, the width and the
asymmetry of the singularity spectrum. These multifractal parameters were
computed with the WLBFM toolbox in MATLAB [266].

In case of EEG, the triplet c1,c2,c3, the maximal and minimal Hurst exponents
and their difference ∆H were estimated for each EEG channel in non-overlapping
windows of 150 s and the results were averaged along the 20 minutes window
channel wise for both QS and nQS. The window 150 s was picked as epoch to
assess the long-term correlation of EEG, according to the findings reported by
[65],[211],[69].

In case of HRV, the triplet c1,c2,c3, the maximal and minimal Hurst exponents
and ∆H were derived for the entire 20 minutes window for both QS and nQS
epochs, in order to assess the slower oscillations which drives the HRV power-law
spectrum [2],[71].

Multiscale Entropy

As discussed in Section 2.4.1 and Section 3.1.2, the discontinuity and slow-
wave persistence of the EEG can be estimated by means of entropy features.
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Multiscale entropy and SampEn were computed to predict stress levels. In
particular, SampEn(m, r) and its variations quadratic sample entropy and
coefficient of sample entropy QSE(m) and COSE(m) were computed with m
spanning in the range m = 2, 3, 6, following the findings by Lake et al. [138]
and Li et al. [154], while the MSE curve is derived for the scales τ = 1, ..20,
as originally discussed by [55]. The complexity index was then derived via the
area under the MSE curve, CI =

∑
τ MSE(τ). In addition, the MSE at scale

3 and 20 (MSE(τ = 3) and MSE(τ = 20)) were also considered [111]. It is
important to remember that SampEn and the MSE at scale 3 represent the
information at small scales or high frequency, while MSE at scale 20 represents
the information at longer scales or lower frequency. CI is a general measure of
irregularity across scales.

In case of EEG, those features were computed in 150 sec non-overlapping
windows and grand-averaged along the time course of each sleep state, while
the entire 20 minutes window was used for entropy features of the HRV. As
already mentioned, the length of the epoch was derived according to the entropy
analysis [65] and the multifractal analysis by [211],[69].

Neural features

The dysmature EEG features can also be quantified by means of the NEURAL
toolbox [188], available on GitHub. The approach proposed by the authors
yields an exhaustive range of features that can be obtained from amplitude, burst
and spectral information, connectivity analysis and the range EEG (rEEG).
As mentioned by O’Toole [188], the range EEG (rEEG) was proposed as an
alternative to amplitude-integrated EEG (aEEG), since a clear definition of the
amplitude integrated EEG is missing and different EEG machines implement
different algorithms for its estimation. The range EEG represents a filtered,
compressed and rescaled version of the EEG: it is normally band-pass filtered
between [2-15] Hz, compressed and rectified in the time domain with a windowing
procedure and rescaled in a linear-log amplitude scale. More details are reported
in [188]. Among all the attributes, it is worth to mention that rEEG was used
to quantify the level of dysmaturity by several morphology indices, such as
its lower and upper margin, its standard deviation and the rEEG asymmetry.
These two margins represent respectively the 5th and 95th percentiles of the
rEEG, while the rEEG asymmetry expresses the difference in distance from the
median to these 2 margins. More details are reported in [188]. These features
were derived only for the EEG and they were obtained using windows of 2 s
with 50% overlap for spectral features and 2 s windows without overlap for
amplitude features. All the indices were then grand-averaged for each sleep
state.
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8.2.5 Multivariate features

Features were also extracted in a multivariate fashion to describe how signals
interact in case of stress. Specifically, EEG cortical connectivity and brain-heart
interaction were investigated. The former was estimated by means of functional
connectivity methodologies [96], while the latter was derived via the wavelet
coherence [207] and the phase dependent dynamics [220].

EEG connectivity

Functional cortical connectivity was analysed by means of lagged and
instantaneous connectivity as well as synchronization of oscillatory processes
from the EEG channels [96], [182], [145]. The greatest advantage of lagged
connectivity is the resistance to volume conduction and low spatial resolution
[240]. Therefore, the magnitude squared coherence k2

xy(f), the imaginary
coherence, Ixy(f), phase locking value PLVxy and phase lag index PLIxy, as
described in Section 3.2.1. The statistical validity of each coupling was then
tested with amplitude adjusted Fourier transform surrogates (see Section 3.2.3).
In case of coherency, the surrogates approach generates a threshold T (f) in
function of the frequency, which was used to zeroed the frequency bins in
both k2

xy(f) and Ixy(f) that didn’t pass the surrogate testing. In case of the
magnitude squared coherence, the k2

xy(f) was averaged in the bands δ1, δ2,
θ, α and β. In case of the Imaginary Coherence, the maximal amplitude of
I(Cxy(f)) was then considered in the same frequency bands [182]. The EEG
connectivity coherency was estimated using a Welch-periodogram approach for
non-overlapping 30 s window. The subwindow was set to 4 secs and overlap to
70%, according to the findings by [39],[96]. Similarly, the Phase Locking Value
and Phase Lag Index were computed in non-overlapping 30 s window, based on
the previous analysis on premature infants EEG connectivity [96], [145].

Brain-heart interaction: Wavelet Coherence

The interaction between brain and heart can be estimated as the correlation
in the frequency domain between the envelope of δ power and the heart-rate
variability. The method by Piper et al. consists of the wavelet coherence
between the δ oscillations derived with the continuous wavelet transform and
the HRV (see Section 3.2.1, [207]). In order to match the temporal scale, both
signals were resampled at 8 Hz. In order to assess the discriminatory power
of the brain-heart, the coherence was investigated in the following frequency
bands: VLF, LF and the combined band of VLF and LF band V LFLF =
(0.033− 0.2] Hz. The main reason is the frequency shift that HRV undergoes
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with maturation of the neurovegetative system from VLF to LF band [111].
In addition, stress information is commonly associated to the low-frequency
band of HRV. Therefore, the brain-heart interaction has been tested with
LF oscillations as heart time-course. Similarly to the scalp connectivity, the
coupling value was derived as mean of the squared time-frequency coherence
in the considered band or the absolute maximum of the imaginary part of the
time-frequency coherence. The continuous wavelet coherence was derived for
the entire 20 minutes in both QS and nQS epochs and the investigation was
limited to channels C3 , C4 and HRV, following the studies in adults by Faes
et al. [80] and in premature infants by Pfurtscheller et al. [204]. In order to
assess the statistical significance, we used amplitude-adjusted Fourier transform
surrogates similarly to EEG functional connectivity (see Section 3.2.3).

Brain-heart interaction: Phase dependent dynamics

The dependent dynamics between two systems can be investigated via phase
reconstruction, as shown by Rosenblum et al. [220] and Section 3.2.2. Their
methodology estimates the phase dynamics of interacting oscillators and provides
a directionality index, which describes the direction and the intensity of the
coupling. The directionality index is a value bounded between [-1,1], which
gives an integrated measure of how strongly a system drives (a value close
to 1) or how sensitive it is to be driven (close to -1). The main limit of this
methodology is the estimation of the phases, since different methods exists with
different underlying hypotheses. The phase of a signal can be estimated via the
Hilbert Transform in case of an oscillatory process (e.g. a band-passed EEG
signal in the delta band). In case of a point-process like the HRV, the phase of
the signal has to be derived taking into account this pulse-type of information.
Therefore, the modulatory signal m(t) was considered in the reconstruction of
the phase dynamics between brain and heart. In addition, since both EEG and
m(t) are wide frequency band signals, the phases of the signals were derived
as phases of the main carrier frequency from those signals. The main carrier
frequency is defined as the frequency with highest power in the signal. In
case of the neonatal EEG, the burst activity around 1 Hz is considered the
main carrier frequency of the cortical activity [261], while the pacemaker of
the modulatory activity is centered on 0.1 Hz, which is between VLF and LF
bands [203]. A method to derive the phase of the carrier frequency is the ridge
wavelet-transform, which is a wavelet transform that finds the carrier frequency
by looking at the maximum of the spectrum in each time-point [114]. The
directionality index was derived only for the channel C3 and m(t) and the entire
20 minutes window was used to derive the phases of the two signals and compute
the interaction. The significance for the directionality index was tested with
Cycle-Phase permutation testing, which randomly permutes cycles of a signal
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phase to generate surrogates (see Section 3.2.3 and [140]). 19 surrogates were
derived to reach a level of statistical significance α = 0.05. However, the results
of the directionality index strictly depends on the order of finite Fourier series
to estimate the phase dependencies [220]. Therefore, the order was tested in the
range [1:10]. The ridge-wavelet transform was estimated with MODA toolbox
[51], while the directionality index was derived with the DAMOCO toolbox
[135] (both implemented in MATLAB).

Graph theory

In multiple points of this thesis, the concept of graph was introduced (see
Section 3.2.4, Chapter 4 and Chapter 7). Specifically, a multivariate methodology
generates an adjacency matrix Aij = Cxi↔xj , where Cxi↔xj is coupling among
nodes, and a set of topological and resilience indices can be computed to describe
the physiological network. Namely, the path length, the clustering coefficient
and the eccentricity are the most common indices to assess the network’s
level of integration. The number nsup is the metric used to assess resilience
and represents the number of removed connections that maintain the global
connectivity high without significant deviation from the original matrix. A full
overview of the all graph features is reported in Table 3.1.

In this study, graphs were applied in two scenarios. The first one was EEG
scalp connectivity, where the number M of processes was set to the number of
EEG channels (M = 8). Specifically, the adjacency matrix was derived every 30
s. The topological indices were computed for each window and averaged along
the entire 20 minutes of QS and nQS. The second case relates to brain-heart
connectivity computed with wavelet coherence. In this scenario, M shrunk to 3
because only two EEG channels (C3 and C4) and HRV were considered. Since
the coupling method is based on a time-frequency approach, the adjacency
matrix was computed for each time sample of the 20 minutes window and the
derived topological indices were then grand-averaged for each sleep state.

8.2.6 Sleep-based Classification

A customized software tool was developed using MATLAB built-in machine
learning libraries to classify patients into stress or absence of stress conditions.
To summarize, the following groups of features were derived for each patient
and for both QS and nQS:

• Power features for both HRV and EEG: 7 features for each HRV time-series
and 5 features for each EEG channel
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• Entropy features: 12 features for each EEG channel and HRV time-series

• Regularity features: 6 features for each EEG channel and HRV time-series

• NEURAL features for EEG: 30 for all EEG channels

• EEG – connectivity topological indices: 76 features for all EEG channels

• Brain-heart connectivity topological indices: 18 features for all EEG
channels and HRV combined and 10 directionality indices.

Considering the number of channels, the different frequency bands and the
different type of methodologies, 800 features in total were extracted.

The study investigated if there was any association between these features of
the physiological background and stress experience in the NICU, which was
defined as experience of pain the day before the recording. In order to test
the different level of pain in the stress modeling, the following thresholds were
considered LPS > 0, LPS > 1, LPS > 4 in the definition of the presence of
stress (similarly to [102]). Multiple classification methods were tested such as
SVMs and linear discriminant analysis (LDA), but subspace ensemble with
LDA has been found superior in separating the two classes. This method
was described in Section 3.4.5. The choice of the final method to design the
classification model is mainly related to the generalization. Although methods
such as SVMs were proven to be superior in classification accuracy in other
studies, the extensive amount of features and the investigation via F-score
analysis (see below) prioritized a linear boundary and the automatic selection
of features via subspace LDA.

Given the extensive number of features, they were included in the subspace
ensemble algorithm if intra-feature correlation was below 90% and they had
the highest ratio between intra and inter variance ratio [47]. Specifically, the
subspace of features has been restricted to 5, since the datapoints in the different
datasets can go as low as 50 (1/10 of the training set as a rule of thumb to
avoid overfitting) [47].

In addition, the subject’s PMA is an important feature covariate given the
maturational changes in both EEG and HRV features. Therefore, if there was a
significant Pearson correlation between the selected feature and PMA (p < 0.05),
the linear correction on the generic feature F Fcorr = F − b1 ∗ age − b0 was
applied, where Fcorr was the baseline value deprived of age effects. However,
this correction works at best if and only if there is a linear dependence between
age and the considered feature. The association between the selected features
and the stress experience was also tested via a Kruskal-Wallis test, both for
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the binary variable LPS > 0 and the three groups LPS = 0, LPS = [1 − 4],
LPS = 4.

The classification accuracy was estimated with a leave-one-patient-out (LOPO)
scheme. The final accuracy of all test sets was obtained by pooling the class
estimates of all patients together. Therefore, only one set of performance indices
was obtained for each classifier. Specifically, each model was assessed via the
misclassification error (E(%)), the area under the curve (AUC) and the Cohen’s
kappa between machine learning labels on the pooled test-set obtained with
the LOPO scheme. The comparison among the different classification models
(SVMs, Subspace LDA, etc.) was based on the AUCs and the Kappa-scores
and the same testing procedure provided lower values for the models that are
not reported. The classification hyperparameters of the subspace LDA, which
are the γ parameter of the discriminant function and the number of ensemble
cycles, were tuned via a 10-fold cross-validation in the training set. Like any
random-forest family or ensemble method, the subspace LDA has one learner
(normally a decision tree, but in this case linear discriminant function) and
a number of cycles to tune the classifier with the bagging process [108]. The
number of cycles represents also the number of "trees" in your "forest". In a
subspace LDA method, the optimization focuses on the γ parameter of the
discriminant functions of the different trees and the number of cycles.

The stress classification was tested in the three datasets based on 3 monitoring
groups (5days, 34w, PSG) and both sleep states. The stress classification
was also tested on 4 different regroupings of the recordings based on PMA:
≤ 32 weeks, (32 − 34] weeks, (34 − 36] weeks, > 36 weeks. The reason to
test the classification performance on those different groups is twofold. On the
one hand, this classification might still be influenced by age in the monitoring
groups (especially in the first group, where the frequency of hands-on care and
the heterogeneity of PMA and gestational age are the highest). On the other
hand, if a classifier has to be implemented at the cot-side, clinicians tend to
be interested in a classifier that considers the age of the patient instead of the
monitoring group. This age division follows clinical and physiological definition.
The 32 weeks is the threshold to define early prematurity, while 36 weeks is the
end of full gestation. The period that goes from 32 to 34 weeks is characterized
by synaptogenesis from the subcortical areas towards cortical areas, while the
phase after 34 weeks experiences the development of the white matter and the
reduction in size of the subcortical plate [134].
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8.3 Results

The results for the stress classification for the monitoring groups are reported in
Figure 8.1 and 8.2, respectively for QS and nQS. The left panel of both Figures
reports the AUC, while the right one shows the kappa score. The AUC, intended
as measure for accuracy, is above 0.7 for both QS and nQS. Specifically, the
AUC of two sleep states respectively lies in the range [0.73-0.97] and [0.70-0.90].
However, the description of the classifier would be incomplete without reporting
the agreement between the ground truth and the predicted labels, expressed
by Cohen’s kappa. The kappa scores span the range [0.24-0.68] for QS and
[0.18-0.68] for nQS, which suggests a moderate association between features
and the outcome variable, but also an increased AUC due to an unbalanced
design of the dataset. In fact, the most noticeable aspect is that kappa does not
necessarily increase with increasing pain threshold, but it can also decrease (as
shown in the PSG group), which can be due to the presence of an unbalanced
dataset.

The results for age groups are reported in Figure 8.3 and 8.4. Similarly to
the monitoring groups, AUC can respectively span in the range [0.78-0.93] for
nQS and [0.77-0.96] for QS and the kappa score span the range [0.18-0.59] for
nQS and [0.20-0.63] for QS. As mentioned in the monitoring groups, the AUC
can increase beyond 0.7, however Cohen’s kappa shows a moderate association
between features and outcome variable or the possibility of an unbalanced
dataset. Moreover, kappa score can either increase or decrease in function of
the pain score and it especially decreases in groups above 36 PMA weeks in
nQS. No substantial differences were noticed between the two sleep groups.

Figure 8.5 shows how the different groups of features contribute to the
classification of stress. Results are here only reported for LPS > 0. In both
sleep states, two main aspects emerge. HRV features consistently underperform,
especially in nQS, with AUC never above 0.62. In addition, there is a consistent
predominance of EEG and Scalp connectivity features (CONN) for stress
discrimination in the young and old age group (respectively ≤ 32 weeks and
> 36 weeks), while brain-heart interaction features can outperform the EEG
or connectivity features in the period from 32 weeks to 36 weeks. This is also
confirmed by feature’s topoplots and boxplots, displayed in Figures from 6 to
10. Young patients show a marked decrease in complexity and phase-lag-index
eccentricity in θ band in case of stress, as reported in figure 8.6 and 8.7.
It is important to remember that the lower the eccentricity, the higher the
integration in the network (and therefore the connectivity). This persistence of
slow-wave activity, higher regularity and connectivity are also present in term
babies: Figures 8.9 and 8.11 report a higher power in δ2 band and connectivity
in δ1 band for PMA > 36 weeks. In the period between 32 and 36 weeks,
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EEG is characterized by a higher rEEG lower margin as well as a higher rEEG
asymmetry, as shown in Figure 8.8. On top of that, a higher brain-heart
synchrony is present in case of stress, as shown by the lower eccentricity in
Figure 8.10. Figure 8.12 specifically reports the results related to the selected
univariate EEG features in a three group fashion, i.e. LPS = 0, LPS = [1− 4],
LPS > 4, and for almost the entire age range investigated in this study. Those
boxplots confirm that the reported differences for LPS > 0 persist even if the
trend is investigated in three categories. In particular, the EEG shows a marked
decrease in complexity with increasing level of stress for PMA ≤ 32 weeks as
well as an increased power in δ2 band for PMA > 36 weeks and an increased
range EEG asymmetry band for PMA = PMA = (32− 34] weeks.

Figure 8.1: Performance for the stress classifier in function of the Leuven Pain
Score (LPS) collected the day before the recording. The results are reported
for the three monitoring group for the non-quiet sleep epoch: the recordings
within 5 days from birth (5days), the recordings at 34 weeks (34weeks) and the
polysomnographies at discharge (PSG). The left panel displays the area under
the curve, while the right one reports the kappa score. The legend reports the
threshold applied on the LPS to define the stress group (LPS > 0, LPS > 1,
LPS > 4).

8.4 Discussion

An analysis of brain activity and heart-rate was performed in order to
extract features to develop a stress classifier for premature infants at cot-
side. Physiological signals, such as EEG and HRV, were collected together with
the pain-scale data. The main novelty of study lies on the absence of intrusive
methods or pain elicitation protocols to develop the stress classifier. Three main
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Figure 8.2: Performance for the stress classifier in function of the Leuven
Pain Score (LPS) collected the day before the recording. The results are
reported for the three monitoring group for the quiet sleep epoch: the recordings
within 5 days from birth (5days), the recordings at 34 weeks (34weeks) and the
polysomnographies at discharge (PSG). The left panel displays the area under
the curve, while the right one reports the kappa score. The legend reports the
threshold applied on the LPS to define the stress group (LPS > 0, LPS > 1,
LPS > 4).

Figure 8.3: Performance for the stress classifier in function of the Leuven Pain
Score (LPS) collected the day before the recording. The results are reported
for the 4 post-menstrual age groups for the non-quiet sleep epoch: ≤ 32 weeks,
(32 − 34] weeks, (34 − 36] weeks, > 36 weeks. The left panel displays the
area under the curve, while the right one reports the kappa score. The legend
reports the threshold applied on the LPS to define the stress group (LPS > 0,
LPS > 1, LPS > 4).



DISCUSSION 187

Figure 8.4: Performance for the stress classifier in function of the Leuven Pain
Score (LPS) collected the day before the recording. The results are reported for
the 4 post-menstrual age groups for the quiet sleep epoch: ≤ 32 weeks, (32−34]
weeks, (34 − 36] weeks, > 36 weeks. The left panel displays the area under
the curve, while the right one reports the kappa score. The legend reports the
threshold applied on the LPS to define the stress group (LPS > 0, LPS > 1,
LPS > 4).

Figure 8.5: Classification performance for each set of features in discriminating
stress with threshold LPS > 0. The results are reported for the 4 post-menstrual
age groups for the quiet sleep epoch: ≤ 32 weeks, (32− 34] weeks, (34− 36]
weeks, > 36 weeks. The left panel displays the area under the curve in non-
quiet sleep, while the right one reports the AUC for quiet sleep. The legend
reports the four sets of attributes : heart-rate variability features (HRV), EEG
features (EEG), EEG connectivity features (CONN), brain-heart synchrony
features (BH).
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Figure 8.6: EEG complexity shows a marked decrease in case of stress during
nQS for patient with post-menstrual age < 32 weeks. The left panel reports
the topoplot of the complexity index on the scalp (area under MSE curve),
while the right one reports the boxplot of the complexity index for each channel
(p-value reported with Kruskal-Wallis test). The reduction of EEG complexity
can be explained by the greater discontinuity in case of stress.

Figure 8.7: The synchrony in the θ band shows a marked increase in case of
stress during nQS for patient with post-menstrual age < 32 weeks. The left
panel displays the topoplot for the eccentricity on the scalp (computed with
phase lag index in θ band), while the right one reports the boxplot of eccentricity
for each channel (p-value reported with Kruskal-Wallis test). The eccentricity
is a measure of distance, therefore the lower the eccentricity the higher the
connectivity.

findings can be reported. First, discontinuous EEG is related with a higher
stress load, especially at young age. Second, a higher scalp and brain-heart
connectivity are biomarkers of stress experience. Third, the stress classification
results are comparable to the pain-pattern classification literature.

The results in Figure 8.6 and 8.9 shows a lower complexity of EEG for premature
infants (PMA ≤ 32 weeks) and higher δ2 power in age-matched premature
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Figure 8.8: The rEEG showed a marked increase in case of stress during nQS
for patients with post-menstrual age (PMA) between 32 and 36 weeks. The
left panel reports the boxplot of rEEG lower margin for the different frequency
bands in patients with PMA between 32 and 34 weeks, while the right one
reports the boxplot of rEEG asymmetry for the different frequency bands with
PMA between 34 and 36 weeks (p-value reported with Kruskal-Wallis test).

Figure 8.9: The δ2 power showed a marked increase in case of stress (LPS > 0)
during QS for patients with post-menstrual age > 36 weeks. The left panel
displays the topoplot of the δ2 power on the scalp, while the right one reports
the boxplot of δ2 power for each channel (p-value reported with Kruskal-Wallis
test).

patients (PMA > 36 weeks). In addition, the subjects show a higher rEEG
margin and asymmetry in the period from 32 to 36 weeks, as displayed in
figure 8.8. These findings suggest the perinatal stress might increase EEG
discontinuity or dysmaturity, which refers to a type of EEG signal characterized
by persistence of slow-wave (intended as higher power in δ band and signal
regularity), discontinuity (intended as burst pattern which increases regularity)
and presence of transient waveforms [196]. The reasons to have a dysmature
EEG might be multiple. Figure 8.5 shows predominance of connectivity and
EEG features for the younger patients, who have EEG complexity as one of the
most discriminative feature (Figure 8.6). This might simply be due to the fact
that younger patients are the one to experience higher stress and therefore a
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Figure 8.10: The Brain-heart connectivity measured via wavelet coherence in
the LF band during nQS for patients with a post-menstrual age between 34 and
36 weeks. Stress exposure increases coupled dynamics between brain and heart.
However, most of the linked dynamics is shared between EEG channels C3 and
C4. The left panel reports the graph of brain-heart network, while the right
panel displays a boxplot for its eccentricity.

Figure 8.11: The synchrony in the δ1 band shows a marked increase in case
of stress during nQS for patients with post-menstrual age > 36 weeks. The
left panel reports the topoplot of the eccentricity (computed with phase lag
index in δ1 band) on the scalp, while the right one reports the boxplot of the
eccentricity for each channel (p-value reported with Kruskal-Wallis test). The
eccentricity is a measure of distance, therefore the lower the eccentricity the
higher the connectivity.

discontinuous cortical activity might be one of the most discriminative features.
However, according to Fabrizi [79], the full development of pain circuitry is
completed by 35 weeks PMA, while infants at 28 weeks tend to have immature
evoked potentials following painful stimuli. Under pain elicitation, Fabrizi et
al. observed delta-brushes and a 10-fold increase in the δ2 band in premature
infants [79], which could explain results in Figures 8.6, 8.8, 8.9. Consequently,
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a)

b)

c)

Figure 8.12: EEG complexity in nQS (panel a) for patients with post-menstrual
age ≤ 32 weeks, the range EEG asymmetry in nQS (panel b) for patients in
the range between 34 and 36 weeks and the δ2 power during QS for patients
with post-menstrual age > 36 weeks (panel c). Data are reported in three
groups LPS = 0, LPS = [1 − 4], LPS = 4. The p-values are obtained with
a Kruskal-Wallis test and the multicomparison tests significance is expressed
by (∗∗) for p ≤ 0.01 and (∗) for p ≤ 0.05. Similarly to the binary comparison,
higher stress values are related to higher δ2 power and asymmetry as well as
a lower complexity. These results show how stress can increase the level of
dysmaturity of EEG with a higher level of cumulated pain.

the higher discontinuity might be driven by a higher stress exposure, which
is also a hypothesis supported by Figure 8.12. Although all reported features
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in this chapter were tested in a three-group fashion, this figure specifically
reports the results related to the selected univariate EEG features, which best
illustrate the relationship between stress and EEG dysmaturity. If data are
grouped in three stress categories (LPS = 0, LPS = [1− 4], LPS > 4), EEG
complexity, δ2 power and asymmetry show a trend related with stress levels,
as also shown by the Kruskal-Wallis test and the multicomparison tests with
the sign (∗) for p ≤ 0.05 and the sign (∗∗) for p ≤ 0.01. In other words,
those boxplot trends might further suggest that an "increase of dysmaturity"
can also be due to early-life pain experience. Although conclusions cannot
be drawn without a further study with a multiclass framework, the majority
of significant multiple comparison tests reveal differences between LPS = 0
and LPS = [1− 4], which might suggest that signs of discomfort are enough
to detect differences in physiological data. This might also be linked to the
asymmetric distribution reported in Table 8.1 and it suggests that stress can be
discriminated with LPS > 0. However, the lack of significant comparison tests
between LPS = [1− 4] and LPS > 4 can be simply due to a lower number of
intense pain patients (LPS > 4), which is also highlighted by the asymmetric
distribution of Table 8.1. In addition, the infants cortical responses are known
to be related to pain intensity and animal models have shown that power in θ
band can also increase in case of noxious stimuli, which is further confirmed in
the lower margin from rEEG in the θ band (Figure 8.8) and higher connectivity
in θ band (Figure 8.7).

Concerning the greater cortical and brain-heart synchrony in case of stress load,
the more intense EEG interactions can be the result of a delayed development
since the functional cortical connectivity as measured by EEG decreases with
maturation [145], [177]. After 32 weeks PMA, neural fibers growth is dominated
by interhemispheric connections to form the core of the adult white-matter. At
the same time, those fibers grow into the cortical plate together with thalamo-
cortical connections, while the subcortical plate diminishes in size [177]. Those
events, together with cortex gyrification, lead to the establishment of cortical
specialization and they are accompanied by profound changes in EEG, which
should be less discontinuous [197] and less functionally connected [177]. The
persistent low-frequency rhythms and connectivity can be a sign of delayed
development or emergence of altered cognitive processing [130]. Those findings
seem to support the fact that stress does not only increase the power, but also
the connectivity, in the low-frequency bands (as reported by Figures 8.7, 8.11,
and 8.10).

Interestingly, the autonomic activity seems less discriminative in detecting
stress exposure, while Figure 8.5 shows that the brain-heart interaction have
better performance in stress classification. Stress exposure might increase the
synchrony between the cardiovascular activity and the cortical activity, as
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reported in Figure 8.10. In addition, Pfurtscheller et al. showed that burst
activity might induce a HR response, which is greater in case of closer burst-
activity [204]. One might speculate the stress might modulate cortical activity,
which can modulate the cardiovascular system. Similar discussion were reported
for stroke [48] and epilepsy [225], but further testing is required to prove the
presence of a synchronized physiological network in case of stress.

Based on the results provided from Figure 8.1 to 8.4, substantial differences
between sleep states are not noticed, as also previously reported by Grunau et al.,
since EEG responses to noxious stimuli are not sleep dependent [100]. If these
results are compared with the literature about pain classification [170], [102],
the reported stress classifiers reached similar performances in terms of accuracy.
However, several aspects should be highlighted. The pain classification literature
usually does not report kappa scores, while this study suggests a moderate
association between the predicted labels and the true labels (the Cohen’s kappa
mostly lies in the range [0.4-0.6]). Gruss et al. [102] reported Cramers’s V
to support the accuracy rates of thermal pain classification. Although their
results suggest a strong association between their features and the level of
pain (the variable V mostly lies in the range [0.6-0.8]), Gruss et al. focused
on evoked pain, while this study focuses on perinatal stress detection based on
physiological background activity. In addition, unlike Gruss [102], an increasing
pain threshold does not always lead to an increase of classification performance.
In particular, a decreased Kappa is observed for a higher pain threshold in old
patients (> 36 weeks) and higher kappa for higher pain threshold in younger
patients (≤ 36 weeks), which can indicate either a milder experience of pain or
a more difficult discrimination of stress at older age. This result is line with
findings by [73], which indicates a predominant effect of early procedural pain
in brain development. Therefore, PMA becomes an essential factor in stress
discrimination. This is not only due to the reduced amount of experienced pain
later on in the NICU stay, but also the interplay between pain and development
which can shift the set of features necessary to discriminate stress. In other
words, the subdivision and correction by infant’s age was also a necessary step
due to different discriminative features for different age groups. As shown by the
boxplots in Figure 8.6, 8.7, 8.8, 8.9, 8.10, 8.11, the features able to discriminate
stress are mainly EEG and connectivity in the first weeks of life, while the
most discriminative features in the last weeks of the NICU are connectivity or
brain-heart synchrony related. Consequently, age correction is not only required
for clinical purposes, but it is fundamental since the physiological response
to perinatal stress differs with patient’s development [73]. Furthermore, the
employed features are related to the description of the functional maturation
of the patients [143],[144],[149]. For sake of completeness, the author of this
thesis tried to investigate a full-dataset model (without age subdivision). The
classification consistently failed (AUC performances around 0.5) or found in the
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PMA the best possible predictor of the stress value. This might be due to the
shift in features (the features in first weeks of life cannot discriminate stress in
the last weeks in the NICU) and a fundamental importance of age in describing
the stress reaction. Therefore, future studies might concentrate on the role of
PMA or GA and how the physiological information can further contribute in
stress discrimination. However, the effect of postmenstrual age and sleep-wake
cyclicity were thoroughly minimized. The analysis based on QS/nQS, the age
correction and the division in age groups according to Pavlidis et al. [197]
limited the influence of development on the stress classifier. It should also be
mentioned that the stress definition was based on the pain score of the day
before and represents the cumulated effect of the previous day. Therefore, the
classification can be barely influenced by the sleep staging of the recording
under investigation and the effect of cumulative pain or stress is expected to
influence the physiology of the infant, as also shown in case of pain stimulation
[237].

In addition, one may argue that the current analysis is an association or
correlation type of analysis, which cannot disentangle the directionality of the
stress discrimination. The reported study was meant to design a classifier and
detect stress load, but two possible explanations can be found. It might be
possible that stress can be the cause of the physiological instability, but it
can also be that the most fragile infants tend to overreact to painful stimuli.
Therefore, a causal type of analysis is then required to establish if stress can
cause the physiological instability. The next chapter will partially address the
link between stress and the state of fragility of patient. However, future studies
should further deepen the investigation and demonstrate that stress induces
physiological instability, which can ultimately impact the development outcome.
The final goal of the stress analysis is not only a stress quantification, but it
should help ultimately to understand the impact of stress on development. In
order to pursue this goal, future investigations should explain if stress causes a
reduction in development outcome and if this reduction can be explained via
abnormalities in the physiological signals [101],[70].

In a nutshell, the current study suggests that preterm infants that show greater
stress have a more dysmature or discontinuous EEG, as reported by the lower
complexity (Figure 8.6), the lower rEEG asymmetry (Figure 8.8) and higher
power in δ2 band (Figures 8.9 and 8.12). Although the decrease in EEG
complexity and the better performance of the stress classifier in the youngest
patients (Figures 8.1, 8.2, 8.3, 8.4) might point out that patients under stress
are most vulnerable at lower gestational age, the stress results seem not only to
depend on the age of the patient, but they can vary based on the threshold used
to define stress. In this perspective, the increase in δ2 power might be related
to the increase of the cortical activity due to accumulation of pain (Figure 8.9).
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Furthermore, stress exposure seems to also induce a further synchronization
among the different modalities, with an increase in EEG connectivity in θ and
δ1 band (Figures 8.7 and 8.11) and a higher brain-heart synchrony (Figure 8.10).
Connectivity seems also to fundamentally contribute to the stress classification,
as highlighted in Figure 8.5. Up to our knowledge, this is the first study that
tries to automatically classify stress in preterm infants in an unobtrusive way,
which can justify the moderate association between features and stress. Our
results show that the relative contribution of the different features and modalities
of the stress classification model change with the infants’ age. Therefore, pain
scores as well postmenstrual age are essential factors to take into account for
stress discrimination in the NICU.

8.5 Summary

In this chapter, the first automatic discrimination of background stress in
premature infants based on physiological data is presented. The main novelty
of study lies on the absence of intrusive methods or pain elicitation protocols
to investigate physiological data under stress conditions. This approach could
provide insights in the relationship between neurodevelopment and stress impact
in the neonatal intensive care unit. Alongside a well-established literature about
EEG responses to noxious stimuli and procedural pain, the findings in this
chapter show a possible relationship between dysmature EEG and stress. In
addition, a more synchronized cortical activity as well as a tighter communication
between the slow-wave cortical activity and the cardiovascular activity have
been found in case of stress, while the autonomic activity does not show a clear
link with perinatal stress. The current findings suggest that an automatic tool
to investigate disorganized EEG can be used not only for brain development,
but can also be helpful to assess the level of stress in infants at the cot-side.





Chapter 9

The description of the
physiological maturation
under early-life procedural
pain

This chapter has been submitted for publication as Lavanga M., Bollen B., A.
Dereymaeker, Jansen K., Ortibus E., Van Huffel S., Naulaers G., Caicedo A.
"The effect of early procedural pain in preterm infants on the maturation of EEG
and heart rate variability". Lavanga M. has developed the methodology, conducted
the experiments and has written the manuscript. Compared to the submitted
manuscript, minor textual and notational changes have been implemented for
better integration in this thesis.

Premature infants present a higher incidence of cognitive, social and behavioral
problems, even there no important complications during their stay in the neonatal
intensive care unit. Several authors suggested that stress and procedural pain
could play role in the altered development of cognition, behavior or motor
patterns. Early-life experience of pain might impact the cerebral development and
maturation resulting in significant lower cognitive scores in later life. However,
it remains very difficult to assess the impact of procedural pain. This chapter
focused on the description of maturation of EEG and heart-rate variability
associated to different pain-related stress levels. Based on the physiological
signal modeling, the research reports how perinatal stress or early procedural
pain can affect the level of maturity of the physiological signals. The investigation
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considered both the entire set of available data and a subset of patients with
gestational age below 29 weeks.

9.1 Introduction

Premature infants remain at risk of developing neurological sequelae and
motor dysfunction like cerebral palsy. Several studies have shown that clinical
outcomes, such as cerebral palsy and visual deficiency are mostly linked to
severe clinical conditions, such as hemorrhage or leukomalacia [164],[183],[262].
The incidence of cognitive and behavioral deficits is far higher than in full-
term infants and often not related to specific cerebral lesions, with 30% to
60% of the preterm population experiencing cognitive, social or behavioral
problems or lower cognitive outcome compared to their peers [157],[156],[164].
It is important to note that the infants might not show any sign of specific
abnormality during their neonatal intensive care unit stay. This means that
also functional abnormalities due to pre-, peri- and postnatal triggers may play
a role in these neurodevelopmental deficiencies [131].

Several authors suggest that stress and repeated procedural pain could play
a role in the altered development of cognition, behavior and motor patterns
of premature infants [100], [238], [259]. Early-life painful experiences seem to
impact the brain structure and function on both the cortical and subcortical
level [73],[214],[238]. Smith et al. showed that the frontal and parietal cortex
volumes are decreased in case of procedural pain [238]. Additionally, the same
author showed that the functions and microstructure of the temporal regions are
disrupted. Brummelte et al. found that white matter connectivity (expressed
as fractional anisotropy) is reduced in case of high numbers of skin breaking
procedures (SBPs), which count events like heel lance, intramuscular injection,
chest tube insertion and central line insertion [42]. Similarly, Duerden et al.
showed that the thalamic volume and thalamocortical projections are affected
by pain, especially if early skin-breaking procedures and low gestational age
(GA) are considered [73]. In most of the studies, convincing results like the
reduction in parietal and frontal thickness were obtained by Ranger et al. [214],
even after correction for clinical confounders (such as gestational age, severity
of illness).

The reasons why brain region volumes change and reduce in case of stress
exposure might be multiple. The possible trigger is the sensitization to pain
processing and the lowering pain threshold, which is known to happen in
premature infants [86],[101]. Sensitization is here intended as a process to shape
nociceptive circuitry. The forced exposure of noxious stimuli in the ex-utero
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environment might affect the subplate neurons of the cortex up to conditions
of excitotoxicity and apoptosis [258]. This increased rate of neuronal death
will emerge as smaller brain volumes or decreased cortical thickness [32]. The
experience of pain might also compromise the thalamocortical connections which
are also fundamental for the pain development [73]. Noxious stimuli can also
affect the glia cells and make them vulnerable to inflammatory responses, which
can be triggered by pain stimuli [258]. Smith et al. [238] also argued that
exposure to stress can affect the hippocampal volume, which ultimately can
affect the temporal lobe connectivity and microstructure.

Several studies suggest that the net effect of this accumulated pain in the NICU
might play a role in the lower cognitive and behavioral outcome. Grunau et
al. [101] did not only show that the cognitive outcome at 8 months and 18
months corrected age are lower in case of high number of SBPs, but also that
infants with a higher exposure to procedural pain show more internalizing
behavior [101]. This adverse impact on outcome seems plausible given the fact
that pain-related stress seems to reduce volumes of multiple brain regions. A
recent review showing that prematurity leads to a lower cognitive outcome,
hypothesized that procedural pain might contribute to this dysfunction [131].
It is worth to note that the diagnostic tools that support the link between
prematurity and cognitive delay were not just imaging techniques but also
functional monitoring, such as EEG and HRV [123],[131],[150].

An important aspect of the stress analysis in the NICU is the tight relationship
between pain and noxious stimuli. Ranger et al. pointed out that pain and stress
cannot be discriminated in clinical practice [215]. Grunau et al. showed that
cortisol, which is a common marker for stress, appears to be lower in case of stress
[100]. Although premature infants have an immature hypothalamic-pituitary-
adrenal (HPA) axis, cortisol appears to rise at 8 and 18 months corrected age,
which might indicate a delayed effect of stress exposure. Therefore, clinicians
rely mainly on pain scales in clinical practice [100].

The assessment of the developmental effect of stress via structural imaging
is invasive for preterm babies. Measures like MRI require transportation
and sedation [169] and, mainly give an impression regarding structural
(anatomical) abnormalities. As discussed earlier, pain sensitization is the
biological mechanism underlying the relation between pain exposure and adverse
outcome and it can be measured in the cortical reactivity of preterm infants.
Responses to the heel lance show dispersed neuronal bursts on the scalp up to 35
weeks gestational age, while full-evoked potentials are recorded from 36 weeks
onwards [78],[237]. This diffused response that is recorded before 35 weeks is a
slow-wave burst with superimposed faster rhythms, which is defined as delta
brush. The emergence of delta brushes are also a sign of the somatosensory
cortex development and they are expected to disappear after 35 weeks GA [198].
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Specifically, Jones et al. showed that the EEG reactivity to noxious stimuli
(either as delta brushes or evoked potientials) can be a fundamental link between
pain and background stress [126]. Therefore one might expect that the effect of
procedural pain can be monitored with functional monitoring, especially the
EEG activity and reactivity. Additionally, Jones et al. [126] also highlighted a
relationship between heart-rate variability of the infants and the noxious EEG
evoked-potentials. HRV is normally monitored to evaluate stress response in
adults. Moreover, Cong et al. showed a specific autonomic reactivity to heel
lance in premature infants, while monitoring HRV [53].

Different research groups showed that both quantitative EEG and HRV features
can be used to follow preterm maturation [65],[110],[143],[149],[192]. Normally,
the rate of EEG discontinuity should decrease with increasing postmenstrual age,
while the variability of the heart-rate with the development [65],[143]. O’Toole
et al. looked at the mathematical quantification of amplitude integrated EEG
considering both gestational and post-menstrual age and their findings showed
that the lower-margin and the aEEG width between upper and lower margins
increase as expected in clinical practice [192]. Curzi-Dascalova et al. showed
that heart-rate variability in all frequency bands increase with increasing age
[58].

In this chapter, the impact of procedural pain on brain development in
a functional perspective is described. Based on the available clinical and
quantitative results of EEG and HRV maturation, the aim was the assessment of
those functional patterns according to the amount of procedural pain experienced
by NICU patients. Specifically, functional growth charts were obtained to
understand whether the accumulated pain can induce dysmature patterns in
EEG and heart-rate variability and suggest an impact on the developmental
outcome of the patient.

9.2 Methods

9.2.1 Participants

As in the two previous chapters, the data investigated in this analysis comes
from the Resilience study, reported in Section 1.2. However, a subset of of (n =
92) preterm infants (<34 weeks GA) was considered in this investigation due to
the limited available information on early-life procedural pain as skin-breaking
procedures.
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9.2.2 Data acquisition

Medical and nursing electronic charts were reviewed from birth till discharge by
a physician and by two GCP qualified neonatal research nurses. Variables that
were obtained include, but are not limited to, gestational age (GA) at birth,
birth weight (BW), illness severity at birth (e.g. CRIB score [246]) and the
number of skin-breaking procedures.

Neonatal procedural pain exposure was defined as the sum of all skin-breaking
procedures (SBPs). To define these SBP’s we drew on the work of Brummelte
et al [42] and Grunau et al [101], as well as the work of Newnham et al. in
the development of Neonatal Infants Stress Scale (NISS) [180]. We included
medical procedures that yield a score of 4 and 5 on the NISS such as chest
tube insertion, central line insertion, heel lance, intramuscular injection, eye
examination, and other added painful procedures such as wound care. An
overview of all procedures is reported in Table 9.1. SBPs were counted for every
category separately for each day. If multiple attempts were carried out, each
attempt was counted as a SBP. We calculated the sum of SBPs in the first
five days of life, because most of SBPs was concentrated in first days of life
(Figure 9.1).

9.2.3 Electrophysiological data collection

Physiological data were measured at three different time points in each patient.
The recording protocol comprised a first measurement within five days from
birth (5days), another session at 34 weeks post-menstrual age (PMA) (34w)
and a last measurement before discharge to home. Measurements lasted for at
least 3 hours as a rule, infants underwent a 24-hours polysomnography before
leaving the NICU, therefore the last session was labeled as PSG. For some
patients the recording schedule was adapted. For infants born at 33-34 weeks
GA, only one recording (representing the first two coinciding recordings from
birth) was performed since their PMA was around 34w when they were 5 days
old. Some infants were transferred to level II units in hospitals closer to home.
Therefore, not all infants have multiple recordings and, importantly, some SBP
measures could not be tracked. However, we strived for the readmission of
infants to our hospital for the PSG measurement before they went home. In
total, 92 patients with 222 recordings and information about the number of
SBPs were analyzed. Similarly to Brummelte et al. and Grunau et al., the
data were split into high skin-breaking procedures (HIGH SBPs) and low-skin
breaking procedures (LOW SBPs), using a 50 SBPs threshold at 5 days from
birth [42],[73]. More details are reported in the statistical analysis section.
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Physiological data included EEG and ECG. EEG data were collected according
to the 10-20 system using nine monopolar electrodes (Fp1, Fp2, C3, C4, Cz,
T3, T4, O1, O2) and monitored with the OSG system (OSG BVBA, Brussel).
Each EEG signal was referenced to Cz, which was then excluded from further
analysis, leaving a total amount of 8 channels. ECG was used to derive the
tachogram or HRV signal as subsequent R-peak to R-peak intervals (RRi). The
R-DECO toolbox [172] was used for R-peak detection.

Before any functional analysis, both EEG and HRV were preprocessed to remove
artifacts and define sleep states. In order to remove movement-related and
non-cortical information, the EEG signals were band-pass-filtered between 0.5
and 20 Hz and independent component analysis to filter EOG was then applied.
The narrow filtering band is based on the quantitative analysis of discontinuous
EEGs by De Wel et al. [65] and of the amplitude integrated EEGs by O’Toole
et al. [191]. EEG data were then used to define two processing epochs of
20 minutes each related to quiet sleep slate and a combination of awake and
active sleep, which is called nonQuiet sleep (nQS). The behavioral analysis
was performed with the algorithms described in [206],[9], the probabilistic
output of which was summed to look for the two 20 minute epochs. QS was
derived as the a window around the maximum of a quiet-sleep probability
profile, while nQS as window around the minimum. Before the extraction of
any functional feature, the last step of the preprocessing for both sleep epochs
was a segmentation in non-overlapping sliding windows and a threshold filtering
according to the following criteria: standard deviation above 50 µV , absolute
difference sample-to-sample above 50 µV and absolute amplitude above 200 µV
[117]. The size of each window was different for each extracted variable and
is specified in following section. It is important to highlight that the window
was excluded from the processing if more than 4 channels exceeds one of the
criteria thresholds. Since the RR intervals of the tachogram can be affected by
premature ventricular contractions (PVC), the RR were corrected as discussed
in [172] and the modulation signal m(t) was derived via the integral pulse
frequency modulation (IPFM) model to investigate the autonomic nervous
system stimulation [15].

9.2.4 Functional measurement

Different features were computed to track the functional maturation of neonates
in the NICU and assess the level of dysmaturity in the electrophysiological signals,
based on the studies reported by [65],[111],[192]. A definition of dysmature
EEG and and dysmature HRV are reported in Section 2.4.1 and 2.4.2, while
the features to quantify dysmaturity are thoroughly described in Chapter 3.
The subset of variables used in this investigation are reported below.
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Table 9.1: Overview of all different SBP categories monitored in the study.
The first column is related to all puncture procedures, the second column relate
to ventilation procedures and the last one is related to other painful procedures.

SBP categories: Punctures SBP categories: Ventilation SBP categories: Other
Venous or arterial blood sample Placing CPAP tube Placing thorax drain
Placing peripheral venous catheter endotracheal aspiration Care thorax drain
Placing deep venous catheter Aspiration mouth and nose Placement

gastro-intestinal tube
Placing umbilical arterial Wound care
and/or venous catheter
Lumbal Punction Surgery
Intubation Eye examination

HRV Power features The different tones of the HRV were assessed as the
absolute power in the high-frequency (HF), low-frequency (LF) and very-low
frequency (VLF) band. The band limits were the following ones: HF = (0.2−4]
Hz, LF = (0.08−0.2] Hz, V LF = (0.0033−0.08] Hz [59]. The following relative
power indices were also derived as V LF/LF , LF/HF , V LF/(V LF + LF ),
LF/(LF +HF ) . The power spectral density was computed via the continuous
wavelet transform, with analytical Morlet as mother wavelet, as shown in
section 3.1.1. The CWT was estimated in both QS and nQS using the entire 20
minutes and power values were averaged over both epochs.

Multiscale Entropy The first index to assess the dysmaturity of EEG was
the complexity index computed via the multiscale entropy [40],[65],[55]. As
discussed in section 3.1.2, this feature is then derived via the area under the
MSE curve, CI =

∑
MSE(τ), which is a general measure of irregularity across

scales. It was computed in 150 sec non-overlapping windows and grand-averaged
along the time course of each sleep state [65],[69],[211]. Multiscale entropy was
computed for each channel and each of these complexity indices was considered
in the final procedural pain analysis.

Amplitude-integrated EEG features The second index to assess the dys-
maturity of EEG was the range EEG (rEEG) asymmetry [189]. The rEEG
represents an estimation of the amplitude integrated EEG (aEEG), since a clear
definition of aEEG is missing [188]. The rEEG asymmetry quantifies the level
of dysmaturity by the difference in distance from the rEEG median to lower and
upper margin of rEEG itself. These two margins represent respectively the 5th
and 95th percentiles of the rEEG [189]. Following the guidelines in [189], the
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asymmetry was derived for the most important EEG frequency bands, which
are δ = (0.5− 4] Hz, δ = (0.5− 4], α = (8− 16] Hz and β = (16− 20] Hz. The
rEEG was derived for 2 s windows without overlap and all indices were then
grand-averaged for each sleep state.

9.2.5 Statistical analysis

Statistical analysis was performed with MatLab (Mathworks, Inc). A linear-
mixed effect model was performed to evaluate the association between functional
measurements (HRV power, EEG complexity and asymmetry) and early
procedural pain. The latter was defined as the cumulated number of skin-
breaking procedures (SBPs) in the first 5 days of life. Subsequently, SBP
scores were binarized (LOW SBPs versus HIGH SBPs) with a threshold of
50 SBPs in the first 5 days of life to detect patients who experienced a high
number of skin-breaking procedures, and thus a high level of early procedural
pain. This threshold was chosen based on the earlier research on the impact of
early procedural pain in preterm infants [42],[73]. These authors used a similar
threshold for binarizing SBP data. Brummelte et al [42] and Duerden et al. [73]
considered procedural pain as the cumulated SBP up to their first MRI scan
(normally around PMA 32 weeks or 21 postnatal days). Our first recording
was planned to be as close as possible to postnatal day 5. However, sometimes
it had to be carried out a few days earlier or later because of the preterm
infant’s unstable medical condition, or because of EEG equipment or technician
availability. In order to correct for the covariate effect of gestational age and
post-menstrual age, the final regression model did not only include the binary
SBP, but also the two age variables. Consequently, each functional variable was
explained by three independent variables (SBP, GA, PMA). Additionally, the
regression models were computed for both behavorial sleep states (quiet sleep,
QS, and non-quiet sleep, nQS).

The significance of the association between early SBPs and functional
measurements was tested in two ways. In order to correct for the multiple
comparisons (multiple features coming from multiple channels), the pvalue of
the SBP coefficient was corrected via the false-discovery rate with α = 0.05. In
addition, the significant contribution of SBP in explaining the maturational
trajectory of the functional variables was assessed via the log-likelihood ratio
(LLR) test [21]. This ratio test specifically assesses whether adding "early SBPs"
in the prediction model reduces the variance of the residuals of a model which
contains only the age variables (PMA and GA). These prediction models were
tested for both the entire set of patients (n=92) and for preterm infants with a
GA ≤ 29 weeks (n=31). We specifically focus on this more coherent group of
extremely preterm babies because they are most vulnerable to require intensive
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Table 9.2: Summary of patient data set at different time points: SBP (Skin
Breaking Procedure at 5 days), GA (gestational age), birth weight (in g), PMA
(postmenstrual age) at different recording dates (5days, 34w, PSG) and CRIB
score. Data are split in HIGH SBPs (SBP ≥ 50) and LOW SBPs (SBP < 50).
Data are median [IQR].

HIGH SBPs (n=73) LOW SBPs (n=19) pvalue

SBP 60 [56.25-69.5] 31 [24-37] ≤ 0.01
GA(weeks) 26.57 [25.29-29.5] 32 [29.5-32.57] ≤ 0.01
PMA5days(weeks) 28.57 [26.43-31.57] 32.86 [31-33.57] ≤ 0.01
PMA34w(weeks) 34.29 [33.71-34.29] 34.07 [33.86-34.29] 0.32
PMAPSG(weeks) 39.93 [38.71-42] 38.43 [37.36-39.21] ≤ 0.01
Birth Weight (g) 950 [820-1137.5] 1540 [1230-1800] ≤ 0.01
CRIB Score 2 [1-4.75] 0 [0-1] ≤ 0.01

Table 9.3: Summary of most vulnerable patient data with GA ≤ 29 weeks :
SBP (Skin Breaking Procedure at 5 days), GA (gestational age), birth weight
(in g), PMA (postmenstrual age) at different recording dates (5days, 34w, PSG)
and CRIB score. Data are split in HIGH SBPs (SBP ≥ 50) and LOW SBPs
(SBP < 50). Data are median [IQR].

HIGH SBPs (n=14) LOW SBPs (n=17) pvalue

SBP 65.5 [58-73] 40 [32-44] ≤ 0.01
GA(weeks) 26.14 [25.14-26.86] 28.43 [26.71-28.71] ≤ 0.01
PMA5days(weeks) 26.57 [26.21-28.64] 29.43 [27.54-29.68] 0.05
PMA34w(weeks) 34.29 [34-34.29] 34 [33.86-34.14] 0.08
PMAPSG(weeks) 39.93 [39.29-42] 38.64 [38.14-40] 0.08
Birth Weight (g) 890 [800-1050] 1090 [905.5-1203.25] 0.1
CRIB Score 2.5 [1-6] 2 [1-4.5] 0.64

care and thus more SPBs. Furthermore, the explained variance of coefficient of
determination or explained variance (R2) and the mean absolute error (MAE)
were reported for each regression model.
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Table 9.4: Results of the linear mixed effect model for the non-quiet sleep
(nQS) state in the ENTIRE dataset. Only the features that have a significant
association with early skin-breaking procedure are reported. The values B
represent the fixed-effect coefficients for the SBP, GA and PMA variables with
the associated significance level: the symbol ∗∗ means pvalue < 0.01 and the
symbol ∗ means pvalue < 0.05. For each feature, the mean-absolute error (MAE),
the coefficient of determination and the significance of the log-likelihood ratio
(LLR) test are reported for each regression model. CI stands for complexity
index and P(HF) stands for HF power in the tachogram.

Feature B(SBP) B(GA) B(PMA) MAE R2 pvalue(LLR)
CI(Fp2) -1.5848∗ 0.2409∗ 0.6689∗∗ 8.0395 0.4755 0.0328
P (HF ) 0.0029∗ 0.0001 0.0005∗∗ < 0.0001 0.2079 0.0097
CI(T4) -1.3332∗ 0.2661∗∗ 0.5414∗∗ 7.1098 0.4207 0.0382

9.3 Results

9.3.1 Patients demographics

Table 9.2 summarizes the clinical characteristics of patients based on SBP
conditions, while a summary of the most vulnerable (GA ≤ 29 weeks) patient
demographics are reported in Table 9.3. Figure 9.1 shows the chart of the skin
breaking procedure as average over the different patients. The curve shows
the SBP dynamics during the neonatal intensive care unit stay. The average
chart is represented by the continuous thick line, while the upper bound and
the lower bound represent the error margin. The curve has been defined as
µ(t) ± σ(t)√

N(t)
, where µ(t) is the mean of the patient distribution, σ(t) is the

standard deviation and N(t) represents the number of patient. The variable t
represents each postnatal day. The exponential decay clearly highlights that
the most of the procedural pain is concentrated in the first days of life and
supports the idea to focus the investigation on the association between early
skin breaking procedure and functional development.

9.3.2 Relationship between EEG and HRV functional vari-
ables and early skin breaking procedure

Early SBPs were found to be significantly associated with a reduction in the
EEG complexity index, during QS as well as nQS. Results are summarized in
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Table 9.5: Results of the linear mixed effect model for the QUIET sleep
(QS) state in the ENTIRE dataset. Only the features that have a significant
association with early skin-breaking procedure are reported. The values B
represent the fixed-effect coefficients for the SBP, GA and PMA variables with
the associated significance level: the symbol ∗∗ means pvalue < 0.01 and the
symbol ∗ means pvalue < 0.05. For each feature, the mean-absolute error (MAE),
the coefficient of determination and the significance of the log-likelihood ratio
(LLR) test are reported for each regression model. CI stands for complexity
index, P(HF) stands for HF power in the tachogram and asymmetry is the
asymmetry of rEEG in the different frequency bands.

Feature B(SBP) B(GA) B(PMA) MAE R2 pvalue(LLR)
Asymmetry(θ) 0.0515∗∗ 0.0025∗∗ -0.0233∗∗ 0.0047 0.6188 0.0025
CI(C3) -2.2227∗∗ -0.1822 1.0768∗∗ 9.7388 0.6148 0.0040
P(HF) 0.0035∗∗ 0.0001 0.0003∗∗ < 0.0001 0.1292 < 0.0001
Asymmetry(δ) 0.0478∗∗ 0.0042 -0.0210∗∗ 0.0050 0.5496 0.0054
Asymmetry(α) 0.0558∗∗ 0.0058∗ -0.0218∗∗ 0.0058 0.5595 0.0099
CI(Fp2) -1.7589∗∗ -0.2112∗ 1.0495∗∗ 7.9296 0.6483 0.0147
CI(O1) -2.1371∗ -0.1758 1.0406∗∗ 8.8279 0.6309 0.0067
CI(O2) -1.7045∗ -0.1428 1.0313∗∗ 7.4683 0.6740 0.0131
CI(Fp1) -1.6282∗ -0.2565∗ 1.0582∗∗ 8.0964 0.6506 0.0315
CI(T3) -1.7707∗ -0.0989 1.0272∗∗ 6.1865 0.7286 0.0120
Asymmetry(β) 0.0468∗ 0.0050 -0.0196∗∗ 0.0053 0.5331 0.0281

Table 9.6: Results of the linear mixed effect model for the non-quiet sleep
(QS) state in the patients with a GA below 29 weeks. Only the features
that have a significant association with early skin-breaking procedure are
reported. The values B represent the fixed-effect coefficients for the SBP, GA
and PMA variables with the associated significance level: the symbol ∗∗ means
pvalue < 0.01 and the symbol ∗ means pvalue < 0.05. For each feature, the mean-
absolute error (MAE), the coefficient of determination and the significance
of the log-likelihood ratio (LLR) test are reported for each regression model.
VLF/(LF+VLF) stands for the relative power in the VLF band of HRV.

Feature B(SBP) B(GA) B(PMA) MAE R2 pvalue(LLR)
VLF/(LF+VLF) -0.0498∗ -0.0171∗ -0.0098∗∗ 0.0061 0.2923 0.0645
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Table 9.7: Results of the linear mixed effect model for the quiet sleep (QS)
state in the patients with a GA below 29 weeks. Only the features that have
a significant association with early skin-breaking procedure are reported. The
values B represent the fixed-effect coefficients for the SBP, GA and PMA
variables with the associated significance level: the symbol ∗∗ means pvalue <
0.01 and the symbol ∗ means pvalue < 0.05. For each feature, the mean-absolute
error (MAE), the coefficient of determination and the significance of the log-
likelihood ratio (LLR) test are reported for each regression model. P(HF) and
P(LF) stand for HF and LF power in the tachogram, while asymmetry is the
asymmetry of rEEG in the different frequency bands.

Feature B(SBP) B(GA) B(PMA) MAE R2 pvalue(LLR)
P(HF) 0.0047∗∗ 0.0015∗∗ 0.0006∗∗ < 0.0001 0.2682 0.0069
Asymmetry(α) 0.0639∗ 0.0056 -0.0208∗∗ 0.0051 0.7015 0.0391
P(LF) 0.0090∗ 0.0019 0.0014∗∗ < 0.0001 0.3056 0.0216
Asymmetry(θ) 0.0502∗ 0.0048 -0.0236∗∗ 0.0050 0.7383 0.0768

Table 9.4 for nQS and Table 9.5 for QS. Early SBPs were negatively associated
with EEG complexity as shown by the negative B coefficients for SBP in both
tables (p < 0.05) for both the FDR test (after ranking correction) and the
likelihood ratio test. The two tables only show the features that passed the
FDR test. Specifically, the functional variables are reported for the different
sleep states, for the specific channel in case of CI and for the specific band in
case of EEG Asymmetry and HRV power.

Figure 9.2 shows the effect of SBPs with the development for channel T4 in
nQS: the recordings associated with SBP ≥ 50 (magenta curve) have a lower
complexity with increasing postmenstrual age compared to the LOW SBPs
group (green curve). This is also illustrated in the 3D representation, which
shows the complexity index of T4 in function of PMA and SBPs as a continuous
variable. The early SBPs is reported as log-transformed continuous variable
for the sake of representation. The complexity plane results tilted for both
the PMA axis and the SBP axis. This means that the highest complexity (in
yellow) is obtained for low SBPs and high PMA, while the lowest complexity is
obtained for low PMA and high SBPs.

Table 9.4 and 9.5 report the power in the HF band (for both sleep states)
and the asymmetry in theta, alpha and beta bands for QS. Similarly to the
complexity index, the charts of HF power and the asymmetry of the θ band are
reported in Figure 9.3 for high number of SBPs and low number of SBPs. The
asymmetry remains higher in case of a higher exposure to pain with increasing



RESULTS 209

PMA, while the HF oscillations of HRV have a higher power in case of higher
SBPs.

The results for the patients with GA below 29 weeks are reported in both
Table 9.6 and Table 9.6. Similarly to the entire dataset, the HF power and the
asymmetry in the α and θ band in QS have a significant association with the
SBP variable and with a positive coefficient both in terms of FDR test and
log-likelihood test (p < 0.05). Figure 9.4 shows that the asymmetry of the α
band and the power in the HF band stay higher in case of a high number of
SBPs throughout the development. Additionally, the LF power also shows a
positive association with SBP (FDR and LLR tests with p-value < 0.05), as
shown in Figure 5. Both the 3D plotting and the growth charts show that a
higher stress load increases the long-term (and short-term) heart-rate variability,
whose increase is normally expected with infant’s development. In periods of
nQS, the only feature that shows a significant association with SBPs is V LF

LF+V LF
index by FDR test. However, the LLR test shows only a tendency of association
between the feature and the stress variable.

Figure 9.1: The chart of the skin breaking procedure is displayed as average
over the different patients. The curve shows the SBP dynamics during the
neonatal intensive care unit stay. The average chart is represented by the
continuous thick line, while the upper bound and the lower bound represent
the error margin. The curve has been defined as µ(t)± σ(t)√

N(t)
, where µ(t) is

the mean of the patient distribution, σ(t) is the standard deviation and N(t)
represents the number of patient. The variable t represents each postnatal day.
The exponential decay highlights that most procedural pain is concentrated in
the first days of life.
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a) b)

Figure 9.2: Complexity Index in non-quiet sleep. The panel a) reports how
complexity index trends with development differ in case of high or low amount
of skin breaking procedures. The magenta curve shows the trend with SBPs
above 50 or HIGH SBPs, while the green curve shows the maturation curve for
SBPs below 50 or LOW SBPs. Both the curve shows an increasing CI with
increasing age, but the magenta curve has slower development (lower slope)
and lower CI at full-term age. The blue/green triangles represent the patient
with low SBPs (N = 73) and red/orange circles the HIGH SBPs (N = 19).
The 3D plane confirms the effects on complexity index by stress. The panel
b) represents the cloud of complexity index data points for each PM age and
each SBPs value and the associated linear plane fitting. The highest value of
complexity on the plain is obtained for the oldest age and the lowest SBPs,
while the lowest complexity is reached for the youngest age and the highest
SBPs. This aspect is also highlighted by the color scale, which goes from blue
for the lowest value to yellow for the highest value. The yellow is reported for
the highest complexity value on the top left of the plane, while the color blue is
reported on the right bottom of the same plane.

9.4 Discussion

Our results showed that a high number of early skin breaking procedures are
significantly associated to a dysmature EEG and more variable heart rate. The
dysmaturity pattern is here defined as signal with a lower complexity index of
the MSE and a higher rEEG asymmetry, which have been proven to respectively
increase and decrease with maturation [65],[192]. The association was present
after correcting for GA, and PMA at the time of recording. Furthermore,
similar results were obtained for both the entire dataset and the most vulnerable
patients (GA ≤ 29 weeks). Interestingly, the results tend to be similar in QS
state (Table 9.5 and Table 9.7), while nQS results were less informative in the
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a) b)

Figure 9.3: The figure shows the association between rEEG asymmetry in the
θ band (asymm) and early skin-breaking procedure (SBPs) (Left Panel A) and
the association between HF oscillations of the tachogram P(HF) and SBPs
(Right Panel B). Data are reported for the entire dataset during QUIET sleep
(QS). The panels show how the asymm and P(HF) maturational trend differs
in case of HIGH SBPs (magenta curve, SBP ≥ 50) compared to LOW SBPs
(green curve, SBP < 50). SBPs seem to increase the level of asymm throughout
the development as well as the power of HF oscillations.

vulnerable group (Table 9.6).

Early pain might act on the infant’s development through different mechanisms,
mainly sensitization to pain of the central nervous system and lowering
sensory threshold [86]. Early pain and injuries might developmentally regulate
nociceptive pathways, such as hyperinnervation of the periphery and increasing
receptive fields of the dorsal horn of neurons [218], [248]. This peripheral
sensitization might lead to the central sensitization, which can affect the
central nociceptive pathways and thalamus. Consequently, the thalamocortical
projections (whose development peaks at 33 week GA) will be abnormally
distributed since their topography and structural organization is activity-
dependent [73],[134]. During the development of thalamocortical projections,
the axons of the thalamus will contend the activity on the cortex. If early pain
disrupts the thalamo-cortical connections, the activity on the cortex will also
be different [73].

The net effect of this central sensitization might not only be a specific cortical
response as shown by [237], but it might lead to a greater discontinuous tracing
on the cortex as shown in Figure 9.2, 9.3 and 9.4. The cumulated EEG
response to early pain as observed in [78],[126],[237],[255] might increase the
discontinuity of the EEG as accumulated and dispersed delta brush reaction
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Figure 9.4: rEEG Asymmetry and HF Oscillations: the most vulnerable patients.
The figure shows the association between the rEEG asymmetry in the α band
(asymm, Left Panel A) and early skin-breaking procedure (SBPs) and the
association between HF oscillations of the tachogram P(HF) and SBPs (Right
Panel B). Data are reported for the patients with gestational age below 29
weeks during QUIET sleep (QS). The panels show how the asymm and PHF
maturational trend differs in case of HIGH SBPs (magenta curve, SBP ≥ 50)
compared to LOW SBPs (green curve, SBP < 50). SBPs seem to increase the
level of asymm throughout the development. Furthermore, the HF oscillations
have consistently higher magnitude with HIGH SBPs compared to the LOW
SBPs group.

and might ultimately contribute to a more dysmature pattern. Therefore,
the greater rEEG asymmetry and the lower EEG complexity are the result
of a more dysmature tracing. Clearly, other subtle factors or causes of this
persistence EEG dysmaturity cannot be excluded. However, Doesburg et al.
[70] also found that a different brain rhythmicity was associated with cumulated
pain, which ultimately entailed a lower visual-perceptual abilities, and Grunau
et al. showed that pain-related stress is associated with a lower cognitive
outcome [101]. In parallel, several authors showed that a dysmature EEG in
premature infants is associated with worse cognitive outcome [131],[150],[262].
Furthermore, early-life pain and the resulting disruption of thalamocortical
pathways are also associated to a lower cognitive outcome [73]. The results in
Table 9.4 and 9.5 and Figure 9.2, 9.3 and 9.4 might provide the functional
link which can discriminate infants with a worse developmental outcome: a
higher SBP load might induce a more dysmature EEG (potentially, for good
part of the NICU stay) and induce a lower development outcome. Currently,
follow-up developmental testing is taking place so we will be able to link the
current results with developmental outcome measures in the future.
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a) b)

Figure 9.5: LF Oscillations in QUIET Sleep: vulnerable patients. The panel a)
reports how with long-term HRV (P (LF )) trends with development differ in
case of high or low amount of skin breaking procedures. The magenta curve
shows the trend with SBPs above 50 or HIGH SBPs, while the green curve shows
the maturation curve for SBPs below 50 or LOW SBPs. Data are reported for
the patients with gestational age below 29 weeks (N = 31) during QUIET sleep
(QS). Steeper increase in LF power are observed in HIGH SBPs group compared
to the LOW SBPs group, which is confirmed by the 3D plane on the right panel
b). P(LF) increases in case of higher post-menstrual age (PMA) and high SBPs
(in logarithmic scale), while the LF power seems to have a lower value (in blue)
when both SBPs and the age are low. This aspect is also highlighted by the
color scale, which goes from blue for the lowest value to yellow for the highest
value.

Unlike EEG, the results related to HRV might be somewhat counterintuitive.
Normally, a lower heart-rate variability in premature infants is associated to a
lower mental outcome [123] and the maturation of ANS is characterized by an
increase in short and long-term heart-rate variability, which means an increase
in HF and LF oscillations [58]. Based on the cortical findings, one would expect
that a higher SBP would decrease the HRV power in different bands. However,
both HF and LF oscillations seem to increase with increasing age and increasing
SBP. The increase in short and long-term oscillations of the tachogram might
be the consequence of a faster ANS development to modulate the noxious
response. This might be a further consequence of central pain sensitization
and the alteration of the stress response at ANS control level and the HPA
axis [73],[100],[258]. However, this hypothesis requires further testing in future
studies.

A notable difference regards the sleep states: QS substantially presents
more significant associations between stress and functional features than nQS.
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Similarly to HRV, definitive conclusions cannot be drawn, but it is interesting
to notice that the greater number of associations are revealed in the calmest
behavioral state with the most discontinuous EEG tracing [8]. This can be
a further proof that early-life stress can induce a more discontinuous EEG,
with a long-lasting effect to infant’s physiology that goes beyond a simple sleep
interruption or deprivation. However, QS is the latest state to mature and is
typically characterized by a discontinuous tracing, which is one of the main trait
of dysmaturity [8]. Therefore, the association between stress and dismaturity
might be easier to investigate in this stage than in nQS, which is normally mix
of active sleep and awake with a more continuous tracing.

Another crucial point regards the most vulnerable patients, who have GA
≤ 29 weeks. Duerden et al. found a stronger association between SBPs and
the thalamic volume [73] in case of vulnerability. One might expect that the
association between SBPs and EEG dysmaturity is mainly driven by the young
GA of the patients with high SBPs. However, the analysis was focused on the
subgroup of the vulnerable patients with GA ≤ 29 weeks and the link between
SBPs and EEG dismaturity remained significant. Therefore, the current results
show similar EEG dysmaturity and HRV behavior for both the entire dataset
and the vulnerable patient group in case of high SBPs. Interestingly, this
similarity is present only for the QS state, while the nQS show different results.
The similarity in the calmest state of the sleep cycle might further support the
long-lasting effect of stress on sleep architecture and physiology.

9.5 Summary

In this chapter, we quantified the association between SBPs and EEG and
HRV functional trends in preterm infants. We found a more discontinuous
EEG and a larger HRV in infants that were exposed to high levels of early
procedural pain. The larger burst activity might be due to a higher cortical
response due to more frequent pain stimulation. The dysmaturity patterns can
further prove that central pain sensitization in premature babies might affect
their future development and cognitive and behavioural outcome. Pain and
stress assessment via functional monitoring might help clinicians to optimize
their pain treatment at cot-side. Since the early-life experience in the first
days of life is crucial for future development, the use of EEG and HRV might
complement clinicians’ guideline about analgesia in order to ameliorate the
neurodevelopmental outcome of the patients.
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Chapter 10

Early-life EEG quantitative
analysis to predict
development disorders in
young infants

This chapter has been submitted for publication as Lavanga M., De Ridder
J. et al. (2020). "Results of quantitative EEG analysis are associated with
autism spectrum disorder and development abnormalities in infants with TSC".
Lavanga M. has developed the methodology, conducted the experiments and has
written the manuscript. Compared to the submitted manuscript, minor textual
and notational changes have been implemented for better integration in this
thesis.

Quantitative EEG analysis showed similar traits for the autism spectrum disorder
(ASD) EEG and the premature neonates EEG with a poor developmental
outcome. However, the quantitative EEG analysis for ASD patients focused only
in infants older than 6 months. This chapter provides an investigation of early-
life EEG dysmature background in infants with tuberous sclerosis complex (TSC)
and its capacity to predict autism spectrum disorder and other developmental
problems. EEG data were collected from TSC patients younger than 4 months
and ASD risk and neurodevelopmental outcome were assessed at the age of 2
years. The EEGs at first visit were analyzed by means of Multiscale Entropy
(MSE), multifractality (MFA) and EEG network features to predict both ASD and
the developmental abnormalities using linear discriminant analysis. Quantitative
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EEG analysis shows that a dysmature EEG, i.e. a signal with higher fractal
regularity and lower entropy, is associated with autism spectrum disorder or
abnormal Bayley outcome at 2 years of age. A quantitative analysis of the
early-life EEG might provide a unique understanding of the brain functional
processing for cognitive disorders or development disabilities, such as ASD, in
TSC.

10.1 Introduction

Quantitative and automatic EEG analysis has been proven useful for early
detection of autism spectrum disorder (ASD) [34],[202]. An extensive review
recently showed which EEG features can be computed to possibly detect ASD,
both at rest or during specific tasks [202]. Namely, multiscale entropy (MSE),
signal fractality and EEG connectivity have been the subject of multiple studies
to investigate ASD risk. By computing the MSE, Bosl et al. obtained a lower
EEG entropy in infants at high risk of ASD and a detection accuracy of 70% at
age 6 months [40]. Peters et al. [202] found EEG networks with higher resilience
in case of ASD, where resilience was defined as a capacity to resist a failure in
the network and it is measured as the reduction of global efficiency, after the
removal of a node or edge [202],[221].

However, current EEG studies on ASD do not focus on patients below 6 months
or close to birth [202],[40],[34], although such early-stage analysis could be
beneficial for patients. Especially, patients who are diagnosed with genetic
disorders such as Tuberous Sclerosis Complex (TSC) may present a variety of
different outcomes. Tuberous Sclerosis Complex (TSC) is a multisystem and
autosomal dominant and a number of studies have shown that the majority
of infants with TSC develop epilepsy and a variety of neurodevelopment
abnormalities including intellectual disability and autism spectrum disorder
(ASD) [57]. However, studies with a specific focus on quantitative analysis of
early-life EEG and TSC–associated Pervasive Developmental Disorders (PDD),
especially ASD, were not published.

Research of EEG background abnormalities in premature infants and neonates
showed that a dysmature EEG was associated with a poor cognitive outcome
[33],[150],[184],[232],[233]. Pavlidis et al. [197] and Watanabe et al. [262]
defined the main traits of a disorganized or dysmature EEG in preterm infants
with a poor clinical or developmental outcome as discontinuity, persistence of
slow-waves, asynchrony or lagged asynchrony among bursts (see Section 2.4.1).

Multiple studies quantified the presence of dysmature EEG in premature infants
as a type of background characterized by a lower entropy, higher regularity and
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higher EEG connectivity [65],[144],[145],[192],[271]. The state of the art clearly
suggests that both the autistic EEG and preterm dysmature EEG presents the
same attributes in term of entropy, regularity and connectivity, but a complete
overview of all those features was never investigated in young infants at risk of
developmental disabilities.

This chapter presents the assessment of the relationship between quantitative
early-EEG characteristics, neurodevelopment and ASD in a cohort of infants
with TSC. Based on the infants’ data in the first months of life, we analyzed
electrophysiological data to automatically predict ASD diagnosis and abnormal
neurodevelopment. Additionally, we investigated the relationship between
early-life EEG and cognitive, motor and language Bayley score.

10.2 Material and methods

10.2.1 Patient sample

This chapter presents an EEG analysis as part of the EPISTOP project, which
is a multicentre and prospective study to assess biomarkers of epileptogenesis in
tuberous sclerosis complex (NCT02098759) and to analyze whether preventive
treatment before seizure onset could improve epilepsy and neurodevelopmental
outcome in TSC children at two years of age. Patients with a definite diagnosis of
TSC and age ≤ four months were enrolled from November 2013 to August 2016
at 10 different sites, after the approval of local ethical committees. Informed
consent was obtained from caregivers in accordance with the Declaration of
Helsinki.

The final number of patients involved in this EEG investigation was 61. The
gestational age (age at birth) of the included patients had a range from 29.71
weeks until 42 weeks. The median GA was 38.14 weeks, as shown in Table 10.1.

10.2.2 EEG recordings

Patients had serial video EEG recordings, but the data processing focused
only on the first-EEG, recorded at four weeks after patients’ enrollment. The
EEG was recorded according to the 10-20 system for at least one hour. The
minimum sample rate was 128 Hz and the electrode impedance was below 5
kOhm. Normally, a set of 19 electrodes was used, but a reduced array with nine
electrodes was allowed in infants below 3 months corrected age (Fp,1, Fp,2, C3,
C4, T4, T3, O1, O2, Cz). The quantitative analysis focused only on this set of
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electrodes and Cz was used as reference channel (which was then excluded from
further processing). The median EEG recording time was 73.42 min (around 1
h 13 min) and the median age at the moment of the recording was 42.57 weeks
(around 1 month and 1 week from birth) for the entire pool of recordings. The
age at moment of the recording had a range from 35.86 weeks to 57 weeks.

10.2.3 Neuropsychological assessment

In order to assess the relationship between neurodevelopmental outcome and
EEG abnormalities, we used the following scales to define developmental
outcomes. First, the Autism Diagnostic Observation Scale 2 (ADOS-2) score or
Diagnostic and Statistical Manual of Mental Disorders-5 (DSM-5) were used as
clinical criteria to evaluate the presence of ASD at 24 months [171]. Second, the
Bayley Scales of Infant and Toddler Development III (BSID-III) were used to
evaluate the cognitive developmental quotient (DQ), language DQ and motor
DQ at two years of age. The median Cognitive DQ was 75, the median language
DQ was 68 and the median motor DQ was 73 for the entire dataset.

An overview of the patients’ demographics is reported in Table 10.1 for all the
EEG recordings and two groups: patient who had ASD diagnosis (ASD) and
those who did not have an ASD diagnosis (NO ASD). The table reports the
median gestational age (GA or age at birth), the median age at the time of the
recording in weeks for two groups and the median BSID-III scores at 2 years.
We also reported the total number of ASD diagnoses and TSC mutations caused
by the gene TSC2 in the patients’ cohort. Figure 10.2 shows two examples of
EEG traces from an ASD patient and from a patient without ASD.

10.2.4 Quantitative EEG analysis

The quantitative EEG analysis was based on the extraction of features that
are associated to the most important traits of dysmature EEG, which are
discontinuity, persistence of slow waves and asynchrony [197]. After EEG
preprocessing, the computed features were combined in different classification
and regression models to determine the development abnormalities of the patient,
as displayed in Figure 10.1. A summary of all attributes is reported in Table 10.2
and Table 10.3. The quantitative EEG analysis was performed with available
MATLAB subroutines or toolboxes which are available online.
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Table 10.1: Summary of patient data set: GA (gestational age or age at
birth), PMA (postmenstrual age or chronological at time of the recording) and
development quotients at 2 years of age based on Bayley Scales of Infant and
Toddler Development III (BSID-III): cognitive, language and motor scores. The
first column reports the demographics of the entire pool of EEG recordings,
while the data are split for ASD (Autism Spectrum Disorder) and NO ASD
outcomes at 2 years of age in other two columns. Statistics are reported as
median [IQR]. The last row represents the number of tuberous sclerosis complex
mutations caused by the gene TSC2 in the two groups.

EEG (n=61) ASD (n=19) NON-ASD (n=42)
GA(weeks) 38.14 [37-40] 38.43 [37-40] 38 [37-40]
PMA(weeks) 42.57 [40.36-45.68]] 41.57 [39.11-43.43] 43.14 [40.86-46.43]
EEG(min) 73.42 [56.95-93.92] 82.08 [60.47-109.1] 71.04 [55-88.5]
BSID-III Cognitive 75 [65-90.25] 65 [55-80] 82.5 [70-95]
BSID-III Language 68 [61.25-78.25] 62 [50.75-66.5] 71 [65-94]
BSID-III Motor 73 [67-85] 67 [55.75-72.25] 77.5 [70-92]
TSC2 44/61 14/19 30/42

EEG preprocessing

EEG data were band-pass filtered between [0.5−32] Hz (FIR filter, with limited
ripple and 40 db attenuation) and resampled at 64 Hz. Each channel was split
in non-overlapping windows of different length based on the computed feature
and each window was kept in the processing if the following criteria were met:
standard deviation below 50 µV , absolute difference sample-to-sample below 50
µV and absolute amplitude below 200 µV [117].

Power analysis

The power spectral density (PSD) was estimated in 30 s window with the non-
parametric Welch approach (see Section 3.1.1). The length of the subwindow
was 4s with 70% overlap. The power was computed in the following frequency
bands δ1 = (0.5 − 2] Hz, δ1 = (2 − 4] Hz, θ = (4 − 8] Hz, α = (8 − 16] Hz,
β = (16−32] Hz and log-transformed. The power features were grand-averaged
for each recording along the window dimension. The split of the delta band in
δ1 and δ2 is explained by the shift in the spectral edge frequency and the power
distribution of the EEG during maturation [261].
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Table 10.2: Overview of the univariate and multivariate features derived from
the physiological signal in the EEG analysis divided in 5 categories: power,
multiscale entropy, multifractality, connectivity features derived by the mean
squared coherence (MSC) and connectivity features derived by the imaginary
coherence. For the univariate feature groups (first three rows), each attribute
was derived for each channel (as indicated by the third column). For the
spectral features and the connectivity features, each attribute was derived for
the main EEG frequency bands (as indicated by the second column). The
last column represents the number of features extracted for each category. CI
stands for complexity index, MSE(3) and MSE(20) is SampEn at scale 3 and
at scale 20 and ∆H stands for the difference between the minimal and maximal
Hurst exponents. Nsup is the number of superfluous connections, ClustCoeff is
the average clustering coefficient, Pathlength is the path length and PL

GE is the
average between long-range and short-range connections.

Features Frequency bands Channels Properties Number
Power δ1, δ2, θ, α, β Fp,1, Fp,2, C3, C4, Band Power 40

T3, T4, O1, O2

Multiscale Entropy Fp,1, Fp,2,C3, C4, CI, MSE(3), MSE(20), 40
T3, T4, O1, O2 SampEn(2), SampEn(3)

Multifractality Fp,1, Fp,2, C3,C4, HurstExp, c2, c3, ∆H 32
T3, T4, O1, O2

MSC - connectivity δ1, δ2, θ, α, β Pathlength, PLGE , 20
ClustCoeff , Nsup

ImCoh - connectivity δ1, δ2, θ, α, β Pathlength, PLGE 20
ClustCoeff , Nsup

Entropy features

Section 2.4.1 and 3.1.2 together with Chapter 8 thoroughly described the
relationship between the EEG dysmaturity and entropy, either measures as
Sample Entropy (SampEn) or Multiscale Entropy (MSE).

Following the pioneering studies of [65],[271], the main features derived in this
analysis to describe the dysmaturity patterns were:

• SampEn with embedding dimension m = 2 and m = 3

• The MSE at scale 3 and 20, i.e. MSE(τ = 3) and MSE(τ = 20))

• The complexity index CI =
∑
τ MSE(τ), which is the area under the

MSE curve
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The SampEn and MSE(τ = 3) represent the information at small scales or
high frequency, while MSE(τ = 20) represents the information at longer scales
or lower frequency [111]. The latter is fundamental to show the effect of the
persistence of slow-waves, while CI is a general measure of overall irregularity
or entropy. All features were estimated in non-overlapping 150s windows and
grand-averaged for each recording.

Fractality features

Section 2.4.1 and 3.1.3 together with Chapter 5, 7 and 8 gave an ample overview
of the relationship between the discontinuity and the slow-wave persistence of
the dysmature EEG and the multifractal parameters.

As shown in the previous sections of this book, the distribution of Hurst
exponents, known as singularity spectrum (SS), was computed via wavelet
transform [121] and can be used to describe the dysmature EEG with the
following set of parameters:

• The main Hurst exponent (HurstExp) at the location of the SS maximum,
which represents the main regularity in the signal

• The parameters c2 and c3, which respectively represent the width and the
asymmetry of SS and measure the "amount of fractals" inside the time
series.

• The difference between maximal and minimal Hurst exponents ∆H of the
SS, which resembles c2 and assesses the number of singularities in a signal.
The higher the number of singularities, the higher the discontinuity.

These features were computed in non-overlapping 150s windows and by means
of the WLBFM toolbox [266]. Subsequently, they were grand-averaged for each
recording.

NEURAL features

The dysmaturity of EEG was also quantified by means of the NEURAL toolbox
(available on GitHub) [188], which estimates an exhaustive range of features
that can be obtained by amplitude, burst and spectral information, connectivity
analysis and the range EEG (rEEG). The latter represents an estimation of the
amplitude integrated EEG (aEEG) [188]. It is important to mention that rEEG
was used to quantify the level of dysmaturity, by means of its lower and upper
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Table 10.3: Overview of the NEURAL Features obtained with the toolbox
described in [188], where the reader can find more details. Spectral and rEEG
features were computed for the main EEG frequency bands (as reported by
the second column). max IBI – maximum interburst interval. The last column
indicates the number of features extracted for each category.

NEURAL Features Frequency bands Properties Number
Amplitude Mean, standard deviation 25

skewness, kurtosis
envelope mean, envelope standard deviation
envelope standard deviation

Spectral δ, θ, α, β Band power, relative power 21
entropy, edge frequency
spectral flatness, spectral difference (Diff)

Range EEG (rEEG) δ, θ, α, β Mean, median, lower margin, upper margin, 32
width, standard deviation
coefficient of variation, asymmetry

Burst Burst percentage, median and max IBI, 4
Number of bursts

margin and the rEEG asymmetry, defined as proximity of the median towards
one of the two margins, based on the studies of [106]. Besides the rEEG features,
the NEURAL toolbox computes statistics of the EEG amplitudes, the power in
the different frequency bands and the spectral difference, the burst percentage
and the time interval between bursts. The complete list of features is reported in
[188] and in Table 10.3. NEURAL features were computed in 2 secs for spectral
features with 50% overlap, 2 secs for amplitude features without overlap and
4 secs for connectivity features with 75% overlap. As already mentioned, the
NEURAL attributes were grand-averaged for each recording.

EEG connectivity

The Functional cortical connectivity was analysed by means of the Imaginary
Coherence (IC) and Magnitude Squared Coherence (MSC), as reported in
Section 3.2.1 and in Chapters 4 and 8.

The statistical validity of each coupling was then tested by means of 19 surrogates
derived with amplitude adjusted Fourier transform (AAFT) surrogates (see
Section 3.2.3 and [95]). The actual MSC coupling was then represented by the
average of k2

xy(f) in the following frequency bands δ1, δ2, θ, α and β. In case
of IC, the maximal amplitude of |I(Cxy(f))| was then considered in the same
frequency bands [182]. The EEG connectivity coherence was estimated using
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a Welch-periodogram approach for non-overlapping 30 s windows, with 70%
overlap and 4s subwindows [39],[95].

Graph Theory

Functional connectivity methods such as IC and MSC generate EEG undirected
networks: the nodes represent the EEG channels and the weighted edges
represent the intensity of the coupling between channels (see [43] and
Section 3.2.4). Graphs can be characterized by different topological measures,
as reported in [221] and Table 3.1. As short recap, the most common measure of
integration is the path length (PL), which is the average length of the shortest
paths among nodes in the network. The global efficiency (GE) is the average
of all inverse path lengths. The PL is normally driven by weaker connections
(or longer distances) in the graph, while the GE is driven by the strongest
connections (or shortest distances) [202]. Therefore, one can also measure the
long-range over short-range connections ratio as the ratio between PL and GE.
Another common index is the average clustering coefficient, which represents
the likelihood of two nodes to be connected to a third one. An overview of the
computed topological indices for this analysis is reported in Table 10.2. The
topological indices were computed by means of the Brain Connectivity toolbox
[221].

Recently, Peters et al. investigated the resilience of EEG networks, which
is defined as the ability to resist random or target attacks (removal of edges
or nodes) and keep the global efficiency close to the original one [202]. As
previously discussed, the resilience has been derived as the number of superfluous
connections, which are the connections that can be removed without significant
changes in the EEG network. The details of this methodology are reported in
Section 3.2.4.

10.2.5 ASD and development outcome prediction

The pipeline followed for the quantitative EEG analysis was as follows: first the
EEG channels were preprocessed in order to remove artifacts and to improve
the quality of the signals. Second, EEG features were extracted in order to
quantify dysmaturity. Finally, the dysmaturity features were related to the
neurodevelopmental outcome of the infant. In order to meet the four stated
objectives and investigate the relationship between EEG abnormalities and
developmental abnormalities in TSC infants (at two years of age), four different
strategies were pursued, as reported in Table 10.4 and Figure 10.1.
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Figure 10.1: A schematic overview of the four strategies implemented in this
analysis. The BSID-III stands for the Bayley Developmental Scale, ASD
is autism spectrum disorder and THR is the threshold applied to define an
abnormal Bayley outcome. After EEG preprocessing, a set of power, entropy,
fractality, range EEG and connectivity features are derived to quantify the
level of EEG dysmaturity. Those features are fed in different supervised
discrimination strategies: 1) binary classification for ASD diagnosis with linear
discriminant analysis (LDA), 2) binary classification with LDA for development
abnormality diagnosis (ABN), 3) multiclass classification with LDA to determine
if infants have ASD or if infants have only an abnormal BSID-III, 4) Regression
analysis to extrapolate the Bayley score. The four supervised strategy blocks
are fed with both features and the ground truth labels ASD, BSID-III (blue thin
lines, BSID-III after threshold THR or the actual continuous variable for the
regression analysis) and they have the prediction of ASD or abnormal outcome
(dashed grey lines).

Automatic classification of ASD patients

The first strategy aimed to design a classifier to predict an ASD outcome at 2
years with EEG dysmaturity features. A set of 5 features was selected for a



MATERIAL AND METHODS 227

Figure 10.2: The figure shows two examples of full montage of EEG from the no
ASD group (NO ASD, upper panel) and the autism spectrum disorder (ASD)
group (lower panel). The data from the 8 channels are reported in a window of
150 sec and the associated entropy at scale 20MSE(20) and the Hurst exponent
are displayed if and only if the threshold criteria discussed in the text are met.
The ASD EEG has lower entropy and higher Hurst exponent, which leads to a
more discontinuous channel with slower rhythms. On the contrary, the EEG of
patients without ASD has faster frequencies and higher entropy at larger scale.
Therefore, the ASD EEG can be considered a dysmature EEG. The sensitivity
of the plotting is reported on the top left of the chart.
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binary classification scheme, whose target variable was represented by autism
diagnosis (ASD vs NO ASD). The feature selection was based on the highest
ratio between higher inter-group variance and lower intra-group variance [47] for
each feature group (power, fractality, entropy, NEURAL, connectivity) and for
the entire pool of attributes. We selected 5 features in order to guarantee that
the number of predictors is below 10% of the total number of patients, which is
a common rule of thumb to avoid overfitting [88]. A classifier was implemented
with a Linear discriminant analysis (LDA) algorithm with 3-fold testing: the
algorithm was iterated 3 times and the classifier was first trained on 2/3 of
data as training set and tested on the remaining 1/3. The LDA regularization
hyperparameter γ was tuned using 10-fold cross-validation (9/10 of the training
set is used for training set and 1/10 is used as validation set). The classification
results were reported as classification error, area under the receiver operating
characteristic (ROC) curve (AUC, defined as measure of classification accuracy)
and Cohen’s kappa score (Table 10.4). Cohen’s Kappa is a statistical measure
of the agreement between machine labels and true labels and it corrects for the
agreement expected by chance (Section 3.4.6). The Cohen’s kappa is usually
a more suitable index for imbalanced datasets. Additionally, the statistical
differences among features represented by autism diagnosis (ASD vs No-ASD)
were tested with a Kruskal-Wallis test for each separate channel.

Automatic classification of abnormal outcomes

The second strategy aimed to predict an abnormal developmental outcome at 2
years. Therefore, it consisted of a binary classification of patients based on EEG
dysmaturity features with a slight modification of the target variable compared
to the first strategy. The positive class or abnormal outcome was represented
by either the ASD diagnosis, an abnormal Bayley score or both. An abnormal
Bayley score was here defined as one or more of the three BSID-III scores at
2 years below a certain threshold. Consequently, this strategy tries to include
any possible abnormality (abnormal vs normal), whether it is a developmental
disorder like ASD, or a global or specific developmental impairment (e.g. low
motor DQ, low cognitive DQ). The definition of abnormal development outcome
with Bayley score is linked to the threshold. The clinical cut-off is usually 70 or
80 since these are associated with a lower mental and cognitive outcome [124].
However, the literature does not show a clear consensus on which threshold
has to be applied to define developmental delay [75],[124]. Therefore, multiple
thresholds were investigated to define the positive class in the range from 55
to 80 with steps of width 3, i.e. [55:3:80]. The threshold 55 represents the
minimum Bayley score in the dataset, while 80 is one of the highest thresholds
in the literature to define developmental delay [75],[124]. The classifier was
designed based on the same LDA algorithm used for ASD detection. The
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classification results were reported as AUC and Cohen’s kappa score in function
of the threshold.

Multiclass analysis of abnormal Bayley outcomes, ASD and normal patients

The third strategy is a multiclass approach, where the target variable splits the
patients in normal or total absence of any abnormal outcome (normal), patients
with just an abnormal Bayley (ABN-Bayley) and patients with ASD diagnosis
(ASD). It is important to notice that ASD is always associated with at least an
abnormal Bayley language score (see Table 10.1). Therefore, this strategy has a
target variable with three classes in order to assess if EEG dysmaturity features
can discriminate abnormalities linked with ASD and Bayley abnormalities.
Similarly to the two previous strategies, a classifier was designed via an LDA
algorithm and with 3-fold testing (2/3 of data as training set and 1/3 test
set). The LDA regularization hyperparameter γ was tuned tuned using 10-fold
cross-validation (9/10 of the training set is used for training set and 1/10 is
used as validation set). The multiclass classifier was trained according to a one-
versus-all scheme. Results were reported as Cohen’s kappa score and two AUCs.
The AUC1 was computed as area under the ROC curve for the classification
Abnormal Bayley Score vs All and AUC2 was computed as area under the
ROC curve for the ASD vs All. Similarly to the second strategy, different
thresholds were tested for the Bayley score. The chosen range was [73,75,80],
which represent the best and the worst case scenarios of the second strategy.
An overview of the different classification performance metrics is reported in
Table 10.4. The statistical differences among features represented by three
classes (Normal vs ABN-Bailey vs ASD) were tested with a Kruskal-Wallis test
for each separate channel with an associated multiple comparison test.

Regression analysis for the Bayley score

The final strategy used a robust linear regression model to explain the three main
Bayley scores. This aimed to investigate how the EEG dysmaturity features
explain abnormalities of each score. For each of the three Bayley scales, the
five most correlated features were used to develop the robust model to predict
the clinical score, together with the presence of TSC1 mutation. The regression
results are reported in terms of explained variance (R2), mean absolute error
(MAE) and the selected features for the regression.
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Table 10.4: An overview of different classification and regression strategies
used to detect development disorders abnormalities. In the case of simple binary
classification, the positive class is represented by the ASD diagnosis (ASD
vs NO ASD) and the performance metrics are the area under the curve, the
Cohen’s kappa and the misclassification error. In the second binary strategy, the
positive class is represented by at least one development abnormality (ASD or
abnormal Bayley Score) which is represented by one of the Bayley Scores under
a certain threshold (ABN vs Normal). In case of multiclass classification, the
first positive class is represented by patients with only an abnormal Bayley score,
while the second positive class is the ASD patients (Normal vs ABN-Bayley vs
ASD). Therefore, one obtains two AUCs: AUC1 for all vs patients with only
an abnormal Bayley score and AUC2 for all vs patients with ASD. The last
strategy is the regression between the EEG features and the BSID-III at two
years. The common metrics are the coefficient of determination or explained
variance (R2) and the mean absolute error (MAE).

Assessment strategies Target variable Performance metrics
Binary classification for ASD ASD vs NO ASD Error, AUC, Kappa Score
Binary Classification Normal vs AUC, Kappa Score
for abnormal development abnormal development
Multiclass classification Normal vs AUC1 (ALL vs only abnormal Bayley outcome),

abnormal Bayley outcome vs AUC2 (ALL vs ASD),
ASD Kappa Score, Error

Burst BSID-III variable R2, MAE

10.3 Results

The results of the quantitative EEG analysis were reported according to the
different strategies explained in the section Methods.

10.3.1 Automatic Classification of ASD patients

Power, multifractal, entropy and connectivity features were computed to
investigate if ASD was associated with a dysmature EEG and a linear
discriminant analysis was used to automatically classify ASD patients.
Figure 10.2 visually suggests that dysmature EEG predicted ASD symptoms
at two years. This visual relationship is supported by the classification results
described in the first strategy. Table 10.5 shows that the different LDA classifiers
for the different feature subgroups have the AUCs in the range of 0.66 – 0.79
and the Cohen’s kappa in the range of 0.26 - 0.48. The most important
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biomarkers in terms of AUC and kappa were MFA features (AUC(MFA) = 0.74,
K(MFA) = 0.48) and MSE features (AUC(MSE) = 0.79, K(MSE) = 0.26).

Figure 10.3 shows the entropy at higher scale (MSE(20)) and regularity
(HurstExp) for the different channels. The Kruskal-Wallis test shows a
significant lower entropy at higher scales for the following channels (Fp,1 –
p < 0.01, Fp2 – p = 0.01, C4 – p = 0.04, T3 – p = 0.02, T4 – p < 0.01) and
higher regularity for the following channels (O1 – p = 0.01, O2 – p = 0.05, T4 –
p = 0.04) in patients with an ASD diagnosis by 2 years of age.

Table 10.7 shows that the fractal and entropy features are specifically selected
in the ASD classification when the entire pool of features is considered. In fact,
all attributes are either Hurst exponents or MSE features, like the complexity
index and the entropy at scale 20.

10.3.2 Automatic Classification of abnormal outcomes

The same features were used in another LDA model to automatically classify
abnormal development outcome according to different Bayley score thresholds.
Figure 10.4 reports the results of the LDA classification of the abnormal outcomes
based on dysmature EEG. The AUCs and kappa scores are reported for the
tested range of Bayley thresholds to define abnormalities in the development.
The second strategy confirms that MSE (red-circles curve) and MFA (green-
diamonds curve) outperform the other biomarkers in the prediction of abnormal
development outcome. For most of the thresholds, MSE and MFA report the
highest AUC and Kappa. The peak-performances are reached at a threshold of
75: MSE reaches AUC up to 0.92 and Kappa up to 0.63, while MFA reaches

Table 10.5: Results for the binary classification models for ASD diagnosis (ASD
vs NO ASD). The model was trained with linear discriminant analysis reported
in terms of misclassification error (percentage of misdiagnosis, E(%)), area under
the receiver operating characteristic (ROC) curve (AUC) and the agreement
between machine and clinical labels via Cohen’s Kappa.

Age (PMA w) Error(%) AUC Kappa
Power 32.59 0.66 0.27
MSE 33.01 0.79 0.26
rEEG 30.26 0.69 0.27
Conn 37.50 0.61 0.16
MFA 22.12 0.74 0.48
All 26.67 0.74 0.35
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AUC up to 0.88 and Kappa score up to 0.45. Beyond this 75 threshold, a drop
in classification performance of each feature group has been observed except for
the combination of all features.

10.3.3 Multiclass analysis of abnormal Bayley outcomes, ASD
and normal patients

Eventually, the same pool of features was used to automatically discriminate
normal patients, ASD patients and patients with only abnormal Bayley outcome.
The results associated to the multiclass strategy are reported in Table 10.6. The
findings of the third strategy are reported for the Bayley thresholds 73,75,80,
which represent the peak and the drop of performance in the second strategy
(Figure 10.4). In case of the multiclass approach, there is a steady increase of
all parameters (AUC1, AUC2, Kappa) with increasing threshold, but the values

Table 10.6: Results for the multiclass classification to discriminate patient
with normal development, ASD and patients with only abnormal development
(Normal vs ASD vs ABN Bayley). The model was trained with linear
discriminant analysis. The performance is reported in terms of misclassification
error (percentage of misdiagnosis, E (%)) and the agreement between machine
and clinical labels via Cohen’s Kappa. Since the model was trained according
to the OneVsAll scheme, the AUCs are reported as the AUC of the class with
only development abnormalities vs all (AUC1) and the AUC of the combination
of ASD vs all (AUC2). The results are reported for entropy (MSE), fractality
(MFA) and the combination of all features. The performance is reported for
the Bayley score threshold range [73,75,80] to define the development delay.

Bayley Error(%) AUC1 AUC2 Kappa
MSE

73 36.67 0.60 0.72 0.28
75 43.33 0.55 0.67 0.13
80 30.00 0.65 0.75 0.36

MFA
73 33.33 0.66 0.66 0.36
75 33.33 0.65 0.73 0.36
80 30.00 0.71 0.71 0.41

All
73 35.90 0.69 0.76 0.33
75 35.90 0.71 0.76 0.32
80 33.33 0.73 0.74 0.35
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Table 10.7: Selected features for the binary classification of NO ASD vs ASD
and the multiclass scenario when all features are combined together. The results
for the multiclass design are reported for the Bayley score threshold range
[73,75,80] to define the development delay. CI stands for Complexity Index,
while nsup is the number of superfluous connections of the Scalp-EEG network
as explained in the main text.

Bayley Features
Binary

Hurstexp(O1), CI(T4), CI(O1), MSE(20, T4), MSE(20, Fp,1)
Multiclass

73 Hurstexp(O1), CI(T4), CI(O1), nsup(δ2), PathLength(δ2)
75 Hurstexp(O1), CI(T4), CI(O1), nsup(δ2), PathLength(δ2)
80 Hurstexp(O1), nsup(δ2), CI(T4), CI(O1), PathLength(δ2)

Table 10.8: Regression model to predict the BSID-III score with the most
correlated features and the presence of TSC mutation. The features reported
here represent the best model to explain the score in terms of mean absolute
error and coefficient determination (R2). The first column reports the type
of Bayley score, the second column the involved features, while the last ones
report the regression performance (R2, MAE and the associated p-value).

Bayley Features R2 MAE Pvalue

Motor MSE(20, T4), PLGE (δ1),MSE(20, O1), 0.3048 7.8502 0.0068
MSE(20, Fp1),PathLength(δ1), TSC

Language ∆H(C3),c3(T3), c3(C3) 0.3711 7.5014 0.0008
HurstExp(C4), HurstExp(O1), TSC

Cognitive Diff(δ), SD(δ),MSE(20, Fp2), 0.4564 7.8529 0.0002
Width(β), Width(δ), TSC
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Figure 10.3: The figure shows the entropy at scale 20 MSE(20) and the Hurst
exponent in the two groups (NO ASD = No ASD, ASD = Autism Spectrum
Disorder). Both describe the persistence of slow-waves and discontinuity. In
the case of ASD, the EEG presents a dysmature or disorganized pattern, since
the regularity of the signal is higher due to spikiness, lack of smoothness and
general discontinuity. The enhanced and abnormal slow-wave information in the
disorganized EEG lowers the entropy at lower frequencies (MSE(20)). P-values
have been derived with Kruskal-Wallis test. The symbols ∗ and ∗∗ respectively
represent post-hoc comparison with p ≤ 0.05 and p ≤ 0.01.

of AUC2 consistently score higher than those of AUC1. For example, AUC2
for MSE, MFA and all features together are 0.75, 0.71, 0.74 respectively, while
AUC1 are 0.65, 0.71, 0.73 respectively. This means that the ASD diagnosis score
seems easier to discriminate compared to a simple abnormality in BSID-III.

Figure 10.5 depicts the boxplots for MSE(20) and Hurst-Exp in the three
different groups defined for the multiclass problem (Normal vs ABN Bailey vs
ASD). The Kruskal-Wallis test shows a significant difference for lower entropy
at higher scales in the following channels (Fp,1 - p < 0.01,Fp,2 - p = 0.01, T3 -
p = 0.02,T4 - p = 0.02) and higher regularity for the following channels (O1 -
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Figure 10.4: Binary classification performance in function of the threshold
applied to BSID-III (BayleyTHR) to define the positive class. The two panels
report the linear discriminant analysis area under the ROC curve (AUC) and
Kappa score for the classification of the normal vs abnormal development
group for each group of features. The abnormal group contains at least one
developmental problem (ASD or abnormal Bayley). The Bayley Threshold
has been used to define the abnormal Bayley outcome for each of the three
investigated scores (cognitive, motor and language outcome). The reported
groups of features are power, entropy (MSE), range-EEG or NEURAL features
(rEEG), connectivity (Conn), fractality (MFA) and all the features combined
(All). Each AUC and Kappa score chart is reported in different colors and
different symbols for each feature group.

p = 0.03, O2 - p = 0.05). The multicomparison test shows a tendency associated
to the severity of abnormal development at 2 years for the MSE(20) in Fp,1, as
indicated by the asterisks associated to p ≤ 0.05. The remaining channels with
a significant p-value show a significant difference between normal patients and
ASD. The entropy at scale 20 is lower in case of an ASD patient with abnormal
Bayley, while the Hurst regularity increases in case of ASD.

Table 10.7 shows the selected features for the binary classification when the
entire pool of features is considered. They mostly belong to the fractal and
entropy family with the addition of graph and network resilience features in
the δ2 band. Figure 10.7 shows the boxplots of the number of superfluous
connections (or network resilience), which suggest a higher network resilience is
found in case of abnormal developmental outcome, as confirmed by the Kruskal-
Wallis test for δ2 (p = 0.02), θ (p = 0.04) and alpha (p = 0.03). The boxplots
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Figure 10.5: The figure shows the entropy at scale 20 MSE(20) and the Hurst
exponent in the three groups (Normal = Normal Development, ABN-Bayley
= only abnormal Bayley outcome , ASD = ASD patients). Both describe the
presence of slow-waves persistence and discontinuity. The combination of ASD
and abnormal development shows a more severe increase of regularity compared
to other groups (especially, in the occipital area) and a more severe decrease
of entropy compared to other groups (especially, in the frontal area).P-values
have been derived with Kruskal-Wallis test. The symbols ∗ and ∗∗ respectively
represent post-hoc comparison with p ≤ 0.05 and p ≤ 0.01.
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Figure 10.6: The figure shows the entropy at scale 20 MSE(20) and the Hurst
exponent in function of the Cognitive BSID-III score. The two panels reported
the cluster of data points (circles with a color for each patient), the expected
value of the considered feature for each Bayley score (pink thick line) and the
95% confidence intervals (pink dashed lines). The left panel clearly shows that
the higher the Bayley score the higher the entropy at scale 20, while the right
panel shows that the higher the cognitive score the lower the Hurst exponent.
The figure confirms that both entropy and the regularity are features of brain
dysmaturity, and are related to developmental outcome in ASD subjects. In
addition, the increase of MSE(20) underlines how the persistence of slow-waves
is related to a worse developmental outcome.

were reported by assuming an abnormal development with Bayley score below
80.

10.3.4 Regression analysis for the Bayley score

The last step of this analysis was the regression analysis to automatically
compute the different Bayley scores with quantitative EEG features. The
relationship between the different Bayley outcome and the EEG dysmature
features is reported in Table 10.8. The explained variance or coefficient R2

for the Motor, Language and Cognitive score is respectively 0.30, 0.38, 0.46,
while the mean absolute error is 7.85, 7.5 and 7.85. For each of the models, the
five most correlated features with different Bayley scores which were used in
the final model are also reported in Table 10.8, alongside the TSC mutation
variable. Similarly to the classification strategies, the entropy at scale 20
(MSE(20, Fp1)) and the Hurst exponent contribute to define the Bayley score
at 2 years. Figure 10.6 shows the relationship between MSE(20)/HurstExp
and the cognitive Bayley score.
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Figure 10.7: The measure of network redundancy is shown for the three different
study groups: normal, abnormal Bayley outcome (Bayley < 80) and ASD with
an abnormal Bayley. As shown by the second and third panel, the number of
superfluous connections (nsup) is higher in case of development abnormalities.

10.4 Discussion

The quantitative analysis of EEG background confirmed that an early-life
abnormal or dysmature EEG background is associated with an abnormal
development outcome in TSC infants. The examined biomarkers and
classification strategies yield a high prognostic value for future developmental
abnormalities in children with TSC. The current findings do not only support
the earlier clinical EEG investigation of the early-life recordings by [61], which
shows that background abnormalities are a significant predictor of ASD, but
confirms the similarities between EEG dismaturity and the autistic EEG traits,
which are normally investigated only in the later childhood.

The results of the models of the first and second strategy show that a dysmature
EEG in the first months of life is associated with ASD traits at 24 months and
with neurodevelopmental abnormalities. Table 10.5 underlines that dysmature
EEG features can discriminate ASD patients, as also displayed in Figure 10.3.
Those results are comparable to the ASD siblings reported by [40] at 6 months.
Although the current results might underperform compared to more common
studies related to classification of ASD [34],[74],[202], the literature has normally
focused on children older than 2 years, while this investigation has specifically
focused to young infants below 4 months. Furthermore, Figure 10.4 and



DISCUSSION 239

Table 10.6 do not only stress that these same features can detect abnormal
development as shown by a wide range of studies in neonates [184],[262], but they
can discriminate ASD patients from patients with abnormal Bayley scores. As
further proof of the relationship between abnormal Bayley and EEG dysmaturity,
we showed that characteristic quantitative EEG features were significantly able
to explain the variance of the cognitive, language and motor BSID-III score
(Table 10.8 and Figure 10.6). Interestingly, the reported analysis also inferred
the best cut-off for the Bayley to define problems with the development based
on data-driven methods. The best BSID-III threshold to discriminate healthy
patients from controls seems to be 75 for the binary case and 80 for the multiclass
case, in line with other clinical studies [75],[124].

Our findings suggest that the most informative features to discriminate ASD
in TSC is MSE and MFA, as shown by [5],[40] and by the performance in
Table 10.5 and 10.6, the selected features in Table 10.7 and the red and green
charts in Figure 10.4. Those results do not only confirm known results of the
risk of autism [34], but prove that ASD-prone patients and subjects with an
abnormal Bayley score have a dysmature early-life EEG, as defined by [197]
and quantified by [65],[95], [144],[191]. This type of signal is characterized by a
lower complexity and higher discontinuity at very young age (< 4 months) (see
Figure 10.3) and it is associated with adverse outcome [197]. Figure 10.5 might
also suggest that EEG entropy at higher scale decreases even further in case of
ASD compared to just a lower developmental outcome (especially in channel
Fp,1). In addition, the selected features for both the classification and the
regression models (Table 10.7 and 10.8) emphasize the role of lower frequencies
for predicting developmental delay, which further support the persistence of
EEG slow-waves in case of dysmaturity or poor developmental outcome. The
fact that the lower complexity and higher regularity play a role in the detection
of the poor outcome is confirmed by the regression results: a lower entropy and
higher regularity in neonatal EEG lead to a worse developmental outcome in
later life (Table 10.8). Interestingly, a higher EEG network resilience was also
found in case of developmental abnormality (Figure 10.7), which confirms the
results reported by Peters [202].

Based on the current results, the quantitative EEG analysis can provide insights
on the neurobiology of the altered brain maturation in patients with TSC.
The higher network resilience found in case of development abnormalities, as
reported by Figure 7 and Peters et al., might be a consequence of local over-
connectivity or reduced functional specialization in ASD patients (Peters et
al., 2013). The dysmature neonatal EEG background is associated with a poor
cognitive outcome [33],[150],[184],[232] and Table 10.8 and Figure 10.6 confirms
that a lower Bayley score is associated with an early-life abnormal EEG in
young TSC infants. Specifically, a background EEG with a lower entropy,
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higher regularity and higher width of the range EEG is predictive of lower
cognitive, motor and language outcomes. More importantly, TSC patients with
abnormal development can be discriminated based on automatic biomarkers of
the early-life EEG. The current results further claim that a dysmature EEG
pattern might reflect cortical injury or a maturation delay in the development
of neurons [105], [150],[232] or simply, the EEG of TSC patients with ASD is
associated to a dysmature EEG, as it is the case for premature infants with a
poor developmental outcome. Unlike other studies related to ASD [40],[202],
the current research includes infants with age below 4 months and an automatic
analysis of early-life EEG might be a pivotal tool to prevent and preserve the
future development of the infant, as also shown in a recent review [131].

However, it is also important to point out some limitations. The number of
ASD patients is limited and future validation studies should include a bigger
sample to confirm the current results. Furthermore, the quantitative analysis
pursued a different nested strategy to show that a dysmature EEG background
is specifically predictive of ASD diagnosis and developmental abnormalities
and the obtained kappa score shows a moderate association between features
and outcomes. However, the moderate level might be also caused by the poor
communication skills of ASD patients, which entails a lower Bayley language
score (as seen by the values well below 70 in Table 10.1). Therefore, the ASD
class might be difficult to discriminate from a generic abnormal Bayley score.
A more interesting problem could be the prediction of intellectual disability in
ASD patients (normally defined by cognitive scores < 70) compared to ASD
patients with any cognitive problem. However, a bigger sample size of ASD
patients would be required for this type of analysis. Moreover, an abnormal
Bayley outcome might include patients with just a lower developmental motor
outcome (known also as developmental dissociation) or patients with both
intellectual disability and developmental dissociation. Future studies should
also include a proper investigation of how the different aspects and traits of
the dysmature EEG contribute to the definition of different abnormal Bayley
outcomes.

In a nutshell, the current analysis delved into the association of a dysmature
EEG background in TSC neonates and infants, the later diagnosis of ASD and
its interplay with the developmental outcome at 2 years. Both entropy and
fractal features can indeed discriminate ASD at early-age, but it can be simply
the consequence of a worsening developmental outcome. And yet, MSE and
MFA have been proven able to discriminate ASD from general development
abnormalities in a multiclass scenario. Besides, multiple studies have shown
that dysmature EEG predicts a worse developmental outcome, but the current
studies show which of the early-EEG quantitative features correlate with the
Bayley score at 2 years.
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10.5 Summary

The investigation of the quantitative EEG analysis in TSC infants showed
that discontinuity and dysmaturity of early-life EEG is associated with ASD
diagnosis and neurodevelopmental abnormalities at the age of 2 years. Following
the definition of Pavlidis and other pioneering studies on the autism spectrum
disorder EEG, a dysmature EEG is characterized by low entropy and high
regularity as a consequence of the discontinuity and the persistence of slow-
waves. Those features are also the ones that are most predictive in detecting
ASD or other abnormal neurodevelopmental outcomes, such as a lower cognitive,
language or motor DQ’s. In addition, a larger network resilience has also been
found in case of development abnormalities [202]. Similarly, to other clinical
studies, the definition of abnormal development was based on a Bayley Score
threshold. Surprisingly, the value that led to the best binary and multiclass
classification was in a range between [75-80], which are near the most common
thresholds used in the clinical practice. Eventually, the quantitative EEG
analysis at early-stage might provide a greater understanding of the brain
functional processing for cognitive disorders or development disabilities such as
autism spectrum disorder. The quantitative EEG analysis at the cot-side might
lead to a further tuning of interventions or preventive care in case of deviation
from the normal developmental trajectory.
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Chapter 11

Conclusions and future
directions

11.1 Conclusions

In the first chapter, we introduced the three main objectives of this thesis:

1. The description of infant’s development inside the neonatal intensive care
unit by means of biomedical signal processing

2. The assessment of stress in NICU patients by means of physiological
biomarkers

3. The investigation of the stress impact on the development of the infant and
the relationship between early-life EEG and the developmental outcome
of the infants

In this thesis, different algorithms were presented to describe the maturation
and automatically predict the age of infants in relationship to the first objective.
They focused on the functional or the effective connectivity of the scalp EEG,
the fractality of the cortical signal or the HRV and other temporal and spectral
features related to the autonomic activity. The same developmental features
were applied to design a stress classifier either in bradycardia epochs or sleep
states in order to address the second objective. The last objective was tackled
with the analysis of similar models used for the first goal, but the development
was investigated under early-life pain conditions. Similarly, the multivariate
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and univariate features that describe the discontinuity and slow-wave patterns
of neonatal EEG were employed in the prediction of future neurodevelopment
delays, such as autism diagnosis and lower cognitive or motor outcome.

Following the structure of this book, the conclusions for each part will be drawn
separately and presented in the next paragraphs.

11.1.1 Preterm development: the assessment of the brain
and autonomic maturation

The contribution of this work can be divided in two main fields, Brain-age models
and autonomic development models. The first one relates to the prediction of
age based on EEG data of the patient, while the latter refers to the maturation
aspects of the heart-rate variability of the infant. In the case of EEG, the
maturation models were based on both univariate and multivariate analysis.

The quantitative assessment of brain maturation

Chapter 4 investigated the relationship between the scalp EEG connectivity
and the maturation of the infant. The regression models were based either
on functional connectivity or effective connectivity methods applied on EEG
datasets of preterm patients with normal developmental outcome. In both
studies, the EEG network topology was normally summarized by means of
graph theory. Both methods have shown that the connectivity can estimate the
age of the recording with performance that are comparable with other published
algorithms. Most importantly, the overall scalp connectivity shows a positive
correlation between the network segregation and the maturation of the infants.
Consequently, the development of the infant decreases the cortical connectivity
and the multivariate analysis can extract new biomarkers for the development
of the infants.

Chapter 5 examined the relationship between the EEG fractality and maturation
as well as the relationship between fractal features and vigilance states. Similarly
to other research reported in the literature, the neonatal EEG shows a decreasing
fractality and regularity with the development of the infant. The changes in
nonlinear properties of the EEG with the infants’ development show that the
brain-age model based on EEG fractality can also reliably predict the age of the
infant. On top of that, the fractal properties change throughout the sleep-wake
cyclicity: the quiet sleep state is normally characterized by higher regularity
and higher number of singularities due to it discontinuous trace, while the
other sleep states are less "multifractal". However, the sleep-state classification
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performance are strongly correlated to the infant’s development: all sleep states
present discontinuous traces at very-low postmenstrual age, which makes quiet
sleep detection difficult.

The quantitative assessment of the autonomic nervous system maturation

Chapter 6 describes the development of the infants looking at the neurovegetative
information. Based on spectral, temporal and fractal features of the heart-rate
variability, it is possible to have a reliable estimate of the age of infants. The
regression models presented in this chapter show that prediction performance
are comparable to the Brain-Age models described in the Chapters 4 and 5.
Furthermore, it shows that HRV has also a decreasing regularity and an
increasing power in all major frequency frequency bands with the development
of the infants. Eventually, it should be highlighted that the best performance
is achieved if the disruptive effect of bradycardias is taken into account and if
different methods to investigate the sympathovagal balance are considered.

11.1.2 Perinatal stress quantification

This part focuses on the general assessment of stress conditions of premature
infants. The reported algorithms implement two binary classifiers based on the
different physiological biomarkers to discriminate the stress load of the neonates.
The contributions will be highlighted for each chapter.

Chapter 7 examined the possibility to discriminate stress by means of
bradycardia events with concomitant desaturations. The dataset was comprised
of 136 patients with recorded pain score and physiological data at different time
points. This study revealed that the patients that undergo stress or procedural
pain the day before the recording may present deeper desaturation, a more
discontinuous EEG and tighter brain-to-brain and brain-to-heart interaction,
especially at younger age. As anticipated in other studies, the management of
hypoxic events might be a possible key to investigate stress conditions in the
NICU and a possible connection with the future neurodevelopmental outcome
of those patients.

Chapter 8 focuses on the background physiological activity during sleep states to
assess stress conditions. Unlike the previous chapter, the intensity of experienced
pain or stress was also investigated. Throughout their stay in the NICU,
patients under stress conditions show a more discontinuous EEG and higher
EEG connectivity and brain-to-heart communication. The classification results
indicate a moderate association between the physiological features and the stress
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outcome. It should be noted that the current study is the first unobtrusive
study to investigate pain, perinatal stress and their effect.

11.1.3 Later development outcome: the effect of stress and
the importance of early-life EEG

Chapter 9 provides further insights of the Resilience study dataset and the results
in Chapters 7 and 8. Based on the subset of the dataset of the previous chapter,
the brain-age maturation and autonomic-age maturation was investigated under
the conditions of high number and low number of skin-breaking procedures in
the first 5 days of life. The findings suggest that a high level of procedural
pain is associated with a more dysmature EEG and more variable heart-rate
throughout the development of the infant. Those results persist even after
chronological or gestational age correction or even if a subset of patients at low
gestational age are considered.

Chapter 10 examines the power of the quantitative analysis of early-life EEG
to predict the developmental disorders, such as autism spectrum disorder. The
automatic detection of EEG dysmaturity by means of fractality, entropy and
connectivity does not only show a moderate association between the EEG in the
first months of life and the autism diagnosis at 2 years, but it can also predict
and discriminate autism from other developmental abnormalities. Furthermore,
the regression models to estimate the Bayley score at 24 months confirm that
EEG dysmaturity features shows a significant correlation with a poor cognitive,
language and motor outcome of the patients later on in life.

11.2 Future directions

In this study, different future trajectories can be envisaged to further extend the
current analysis. The next steps may concentrate on the algorithmic aspects
related to the different physiological biomarkers that were used in this thesis, but
they can also focus on new insights related to stress detection and the impact
of pain on maturation. In the next paragraph, a list of possible refinements and
extensions is proposed.

11.2.1 Graph theory

The graph theory was mainly used to investigate the topology of the EEG
channel network or the brain-heart networks. However, a fundamental aspect
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in graph theory relates to the modularity of the network or the identification
of community structures [36]. Different connectivity studies do not simply
investigate if the network presents a random vs a small-world topology or
a dominant hub vs smaller hubs, but they try to identify specific groups of
nodes, investigate if they are associated to a specific anatomic function (e.g.
the relationship between temporal networks and the auditory cortex) and if
the structure of the communities remain stable over time [213], [44], [193].
However, this type of analysis may require high-density EEG or fMRI, which
are monitoring tools able to investigate the brain at more refined spatial scale.
Consequently, the number of nodes in the network significantly expands because
of the higher number of electrodes or because of the higher number of brain
regions investigated with the magnetic resonance [185],[44].

The natural extension of the modularity analysis would be the investigation
of network dynamics, which investigates how the interaction of a single node
evolves over time [24],[93],[162]. Furthermore, the statistical significance of the
topological indices derived via network dynamics may require a specific set
of surrogate methods, known as surrogate network analysis [11]. It normally
consists of a generation of random networks and a comparison between the
properties of those surrogate networks and the lattice under investigation [250].

Another fundamental aspect to be investigated relates to the definition of
network resilience. In this thesis, resilience was defined as a trade-off between
the entropy of the graph and the squared difference (or distance) between the
adjacency matrix with some of the links that were removed and the original
matrix. Although the number of superfluous connections is clearly an innovative
metric, its interpretation and application can be improved. The meaning of
this new index can be investigated by means of a correlation analysis with
other topological measure (such as the path length) or by the assessment of
the number of superfluous connections in simulated graphs. Additionally, one
can further tune the definition of this resilience index by the use of different
distance metrics between the original matrix and the adjacency matrix with
removed links or different type of function to define the entropy of the graph.

11.2.2 Network-Physiology age model

The current maturation models exploit either the cortical information or the
autonomic information. The natural extension will be the description of the
Network Physiology growth charts [22], [23]. They will aim to describe how
the communication between brain and heart or other physiological modalities
evolve over time during the stay in the NICU. In addition, those biomarkers
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can be used to predict the future development outcome of the patients (such as
a specific diagnosis or the Bayley score of the patient).

Interestingly, Bartsch et al. applied the framework of time-delay stability to
investigate how the interaction among EEG, EMG and heart-rate change in the
different sleep states of healthy adults [23]. One can also envisage a pilot study
to assess the infant’s network physiology during different behavioral states in
the NICU.

11.2.3 Stress classification

Chapters 7 and 8 focused on the use of EEG and HRV to classify stress by
means of the Leuven Pain Score. Chapter 10 described the evolution of those
physiological signals under different stress loads expressed by the skin breaking
procedures. Although the use of benchmark biomarkers such as cortisol are not
reliable in infants [100], the current findings must be confirmed by a multicenter
and multiscore study. The first fundamental future step is to prove that the
relationship between EEG dysmaturity or chronic abnormalities and stress is
supported by a variety of pain scores. Therefore, the current classifier can be
redesigned to embody other scales (such as the skin breaking procedure or the
premature infant pain profile score) in either early-integration or late integration
fashion [242]. The latter normally consists of an array of classifiers for each
outcome variable (in this case the different pain scores), which might lead to
either a combination of the different latent variables or the predicted outcomes.
The early-integration simply consists of a combination of the different pain
scores in one single variable, which is mathematically far simpler than a late
integration. However, the design should take extra care. In the different trials
of the reported investigation, a combination of different days of the Leuven Pain
Score and the use of other scales, such as the CRIB score, was also considered.
Such combination might be influenced by sleep-wake cyclicity or other factors
that are not necessarily related to stress. Therefore, the combination of pain
scores might require a weight scheme, which should either be optimized or
designed with prior clinical knowledge. Eventually, the final validation that
stress enhances EEG dysmaturity should require further proof which is not
simply given by a variety of scores, but it also needs to be investigated by other
hospitals (multicenter analysis).

The analysis of stress was performed with age at birth and at moment of the
recording as the main confounding factors. However, there are other factors
that could play a role in stress classification, such as the effect of analgesic
drugs or non-pharmacological treatments Some preliminary results have shown
that skin-to-skin contact or Kangaroo care might decrease the classification
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performance of stress detection [148]. The possible speculation is that Kangaroo
care might reduce the effect of perinatal stress, but further studies are needed
to support this theory. Furthermore, the parent’s influence and other NICU
environment factors, such as light or sound noise, could also be considered in
the next step of this research.

Chapters 7 and 8 also give a first insight on the use of Network Physiology for
pain and stress classification. There are multiple studies that investigated the
classification of pain in a multimodal sense, with the inclusion of modalities
such as near-infrared spectroscopy, EMG and skin conductance [249], [214].
Nonetheless, it is also important to investigate how the pain or stress can
effectively impact the interaction among the different physiological system and
whether the couplings increase or decrease variability under different stress or
pain conditions.

11.2.4 Stress Maturation

The results reported in Chapter 9 clearly show that a higher load of skin breaking
procedure is associated with a higher EEG discontinuity, independently from the
gestational age. The next step of this research is to investigate the relationship
between the early-life EEG under stress conditions and the neurodevelopment
outcomes of the patients involved in the resilience study. The fundamental
research question is to prove that dysmature EEG is the fundamental link
between skin-breaking procedure and a lower cognitive outcome. A validation in
this direction will further support the necessity to monitor perinatal stress in the
NICU by means of physiological signals. Furthermore, the level of stress-related
EEG or other signals dysmaturity might also give a first prognosis of the future
Bayley score or development outcome of the patients. The horizon of the current
research can also be expanded to a more composite definition of stress. The
present findings are linked to the pain-related stress, but other factors may play
a role such as maternal separation and sensory stimuli. A retrospective study
on the physiological signals based on the detachment levels or the investigation
of the relationship between sensory processing disorders and the physiological
maturation might provide new branches for the development of the premature
brain research [100],[222].

In conclusion, this thesis showed multiple ways to quantify the level of
dysmaturity of EEG and HRV and a variety of approaches that link this
automatic assessment to perinatal stress. The pivotal finding was that dysmature
EEG and a strong EEG and HRV connectivity are related to pain-related stress.
These results might indicate a possible impact on the future development of
the infant. The whole research wanted to prove that data-driven strategies in
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the NICU might help to preserve the maturation and wellbeing of the patients.
Therefore, future studies to develop systems and monitors for stress assessment
at cot-side are welcome. Most importantly, extensive longitudinal studies that
link stress events during neonatal intensive care with later childhood might also
shed light on the necessary preventive strategies to improve the overall cognitive
outcome of the preterm population.



Appendix A

Supplementary Tables of
autonomic maturation trends

This appendix provides the Chapter 6 supplementary tables, which reports the
trends for all features in three age groups (PMA ≤ 32 wks, (32− 36] wks, > 36
wks)
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Table A.1: The main temporal, spectral and fractal features are reported for
the post-bradycardia periods. The results are reported as median(IQR). IQR
stands for interquartile range. The fractal indices are reported for fs = 8 Hz.
The symbol ρ stands for the Pearson correlation coefficient. The symbol ∗∗
represents a significant correlation with p ≤ 0.01, and ∗ is used for a significant
correlation with p ≤ 0.05. n.s. is used to indicate a non-significant correlation.

Median(IQR) - PMA weeks ≤ 32 (32− 36] > 36 ρ(%)
Temporal features in the post-bradycardia (PB) group

µRR 374.65(366.38-391.36) 377.07(364.33-393.69) 387.2(374.98-416.44) 0.39∗∗
σRR 16.71(12.02-22.05) 25.5(21.65-31.1) 28.47(24.03-32.08) 0.49∗∗

Spectral features in the post-bradycardia (PB) group
P (V LF )Welch 106.24(63.14-156.22) 250.27(180.65-408.05) 287.59(219.04-454.15) 0.38∗∗
P (V LF )SPWD 643.16(434.61-1029.4) 1787.69(1081.86-2475.95) 2013.8(1252.61-2653.49) 0.39∗∗
P (V LF )Wavelet 36.25(19.22-56.58) 82.2(46.77-119.8) 89.58(62.29-139.78) 0.34∗
P (LF )Welch 10.91(5.35-16.13) 28.98(13.41-48.24) 50.5(19.82-67.56) 0.63∗∗
P (LF )SPWD 70.65(29-94.04) 141.99(84.7-219.13) 450.23(119.78-574.82) 0.69∗∗
P (LF )Wavelet 2.14(0.96-3.68) 4.17(2.16-8.9) 17.74(4.94-25.51) 0.69∗∗
P (HF )Welch 7.85(3.88-9.53) 9.99(6.08-13.7) 11.84(9.28-24.15) 0.22n.s.
P (HF )SPWD 38.05(22.98-68.8) 76.75(42.2-106.64) 124.07(87.74-210.87) 0.39∗∗
P (HF )Wavelet 0.69(0.36-1.3) 1.61(0.67-2.28) 3.57(1.55-6.4) 0.61∗∗
V LF
LF Welch

12.22(7.92-24.59) 9.9(5.8-18.72) 5.45(4.72-8.03) 0.06n.s.
V LF
LF SPWD

10.76(7.7-13.27) 7.68(4.98-15.57) 4.5(3.11-4.82) -0.08n.s.
V LF
LF Wavelet

20.17(12.68-34.29) 19.6(7.22-26.37) 6.98(4.53-10.08) -0.36∗∗
LF
HF Welch

1.47(1.05-1.96) 2.33(1.54-3.36) 3.91(1.9-4.94) 0.56∗∗
LF
HF SPWD

1.38(1.14-1.79) 1.91(1.71-2.74) 3.2(1.46-3.81) 0.57∗∗
LF
HF wavelet

2.27(1.87-3.02) 3.2(2.76-3.75) 4.56(3.04-5.24) 0.48∗∗
LF

LF+HF Welch
59.45(48.87-65.64) 69.97(60.1-76.75) 79.55(65.51-83.17) 0.45∗∗

LF
LF+HF SPWD

57.89(53.12-63.96) 65.63(63.1-73.15) 76.13(59.34-79.22) 0.48∗∗
LF

LF+HF Wavelet
69.44(65.16-74.67) 76.18(73.35-78.44) 81.96(75.27-83.65) 0.37∗∗

LF
LF+V LF Welch

9.11(5.32-12.28) 9.17(5.2-15.27) 15.99(13.78-17.47) 0.48∗∗
LF

LF+V LF SPWD
9.14(7.5-11.74) 11.53(6.04-16.74) 19.79(17.18-21.91) 0.56∗∗

LF
LF+V LF Wavelet

5.38(3.45-8.7) 4.9(3.67-12.17) 14.06(11.77-18.09) 0.57∗∗
Fractal features in the post-bradycardia (PB) group

Hexp,[j1,j2=5,12] 0.61(0.52-0.7) 0.55(0.45-0.59) 0.5(0.44-0.56) -0.47∗∗
C2,[j1,j2=5,12] -0.2(-0.26–0.17) -0.19(-0.21–0.13) -0.14(-0.15–0.11) 0.45∗∗
Hexp,[j1,j2=3,12] 0.67(0.6-0.71) 0.66(0.59-0.69) 0.62(0.58-0.65) -0.33∗
C2,[j1,j2=3,12] -0.14(-0.16–0.1) -0.11(-0.14–0.08) -0.09(-0.11–0.09) 0.2n.s.
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Table A.2: The main temporal, spectral and fractal features are reported for the
between-bradycardias (BB) periods. The results are reported as median(IQR).
IQR stands for interquartile range. The fractal indices are reported for fs = 8
Hz. The symbol ρ stands for the Pearson correlation coefficient. The symbol ∗∗
represents a significant correlation with p ≤ 0.01, and ∗ is used for a significant
correlation with p ≤ 0.05. n.s. is used to indicate a non-significant correlation.

Temporal features in the between-bradycardias (BB) group
Median(IQR) - PMA weeks ≤ 32 (32− 36] > 36 ρ(%)

Fractal features in the three age groups
µRR 370.51(359.96-388.36) 377.42(363.11-389.25) 394.93(370.01-427.45) 0.47∗∗
σRR 13.89(10.97-18.49) 19.81(15.72-23.82) 29.1(21.99-30.66) 0.64∗∗

Spectral features in the between-bradycardias (BB) group
P (V LF )Welch 68.99(46.83-128.31) 156.67(100.26-217.63) 320.47(184.27-388.76) 0.54∗∗
P (V LF )SPWD 358.71(321.19-673.85) 991.87(498.71-1346.25) 2332.8(901.57-2915.13) 0.58∗∗
P (V LF )Wavelet 19.23(16.42-40.32) 58.93(35.74-75.05) 108(55.74-147.03) 0.63∗∗
P (LF )Welch 8.27(3.78-13.34) 14.99(5.95-25.28) 35.69(26.87-49.37) 0.66∗∗
P (LF )SPWD 46.5(25.63-88.72) 106.67(56.24-154.71) 273.11(213.86-373.31) 0.73∗∗
P (LF )Wavelet 1.3(0.86-3.38) 4.23(1.93-6.28) 11.34(8.4-15) 0.71∗∗
P (HF )Welch 4.85(3.47-6.9) 5.2(4.06-8.12) 11.55(6.11-13.56) 0.17n.s.
P (HF )SPWD 24.07(19.35-49.89) 50.8(25.85-85.57) 103.73(63.59-129.27) 0.24n.s.
P (HF )Wavelet 0.45(0.36-1.06) 0.91(0.53-2.2) 2.79(2.09-4.65) 0.62∗∗
V LF
LF Welch

9.4(7.9-13.65) 9.22(5.58-18.69) 5.29(4.7-8.4) -0.2n.s.
V LF
LF SPWD

7.86(6.19-10.78) 7.5(5.3-13.48) 4.02(3.45-6.87) -0.14n.s.
V LF
LF Wavelet

13.42(10.75-19.77) 11.73(8.1-21.36) 7(6.17-10.44) -0.3n.s.
LF
HF Welch

1.42(0.75-2.16) 2.19(1.8-3.09) 3.78(2.39-4.23) 0.57∗∗
LF
HF SPWD

1.45(0.98-1.6) 1.87(1.61-2.18) 2.8(1.61-3.25) 0.52∗∗
LF
HF Wavelet

2.32(1.8-2.84) 3.2(2.39-4.11) 3.67(2.47-4.6) 0.33∗
LF

LF+HF Welch
58.67(42.64-67.61) 68.69(64.25-75.48) 78.97(70.53-80.88) 0.56∗∗

LF
LF+HF SPWD

59.11(49.57-61.62) 65.19(61.76-68.51) 73.67(61.65-76.48) 0.47∗∗
LF

LF+HF Wavelet
69.86(64.13-73.93) 76.21(70.43-80.43) 78.39(71.21-82.13) 0.33∗

LF
LF+V LF Welch

9.71(6.91-11.29) 9.87(5.18-15.21) 16.08(10.77-17.58) 0.42∗∗
LF

LF+V LF SPWD
11.29(8.24-13.6) 11.67(6.91-15.29) 19.55(12.12-21.93) 0.44∗∗

LF
LF+V LF Wavelet

6.93(4.89-8.53) 7.9(4.63-11.05) 12.57(8.75-13.95) 0.48∗∗
Fractal features in the between-bradycardias (BB) group

Hexp,[j1,j2=5,12] 0.6(0.52-0.68) 0.54(0.5-0.59) 0.48(0.45-0.52) -0.5∗∗
C2,[j1,j2=5,12] -0.19(-0.23–0.14) -0.17(-0.2–0.14) -0.09(-0.12–0.08) 0.43∗∗
Hexp,[j1,j2=3,12] 0.68(0.61-0.73) 0.65(0.6-0.67) 0.6(0.55-0.62) -0.36∗
C2,[j1,j2=3,12] -0.12(-0.15–0.1) -0.12(-0.14–0.1) -0.08(-0.09–0.05) 0.23n.s.
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Table A.3: The main temporal, spectral and fractal features are reported for the
within-bradycardia (WB) periods. The results are reported as median(IQR).
IQR stands for interquartile range. The temporal and spectral indices are
reported for fs = 6 Hz and the fractal index is reported for fs = 8 Hz. The
symbol ρ stands for the Pearson correlation coefficient. The symbol ∗∗ represents
a significant correlation with p ≤ 0.01, and ∗ is used for a significant correlation
with p ≤ 0.05. n.s. is used to indicate a non-significant correlation.

Temporal features in the within-bradycardia (WB) group.
Median(IQR) - PMA weeks ≤ 32 (32− 36] > 36 ρ(%)

Fractal features in the three age groups
µRR 384.9(369.62-398.91) 384.16(369.2-397.51) 389.12(377.65-425.8) 0.37∗∗
σRR 38.31(32.22-44.62) 40.61(32.5-49.81) 35.89(28.43-40.74) -0.04n.s.

Spectral features in the the within-bradycardia (WB) group.
P (V LF )Welch 167.75(101.36-282.21) 312.85(213.81-435.07) 300.05(226.89-457.86) 0.28∗
P (V LF )SPWD 1109.26(838.07-1615.84) 2025.93(1381.79-3909.12) 2168.01(1229.65-3824.98) 0.31∗
P (V LF )Wavelet 82.66(46.46-169.3) 122.69(69.22-230.91) 128.03(77.63-164.54) 0.1n.s.
P (LF )Welch 13(6.4-18.71) 31.09(15.62-52.49) 49.95(20.66-73.54) 0.59∗∗
P (LF )SPWD 102.62(68.87-185.63) 216.65(136.5-351.6) 502.28(152.3-734.74) 0.65∗∗
P (LF )Wavelet 2.3(1.12-4.03) 4.68(2.8-9.86) 18.66(5.35-26.46) 0.69∗∗
P (HF )Welch 7.73(4.31-10.01) 10.63(7.49-14.56) 12.21(9.75-25.52) 0.19n.s.
P (HF )SPWD 78.85(56.13-117.78) 106.08(78.08-182.35) 148.54(118.65-225.94) 0.3∗
P (HF )Wavelet 0.6(0.4-1.34) 1.49(0.74-2.57) 3.75(1.58-6.34) 0.59∗∗
V LF
LF Welch

13.25(9.99-25.23) 9.86(5.99-19.16) 5.62(4.53-7.99) 0.01n.s.
V LF
LF SPWD

8.3(6.56-12.13) 8.85(4.78-12.81) 4.18(2.93-4.69) -0.08n.s.
V LF
LF Wavelet

43.62(24.21-96.77) 30.2(10.15-56.67) 9.21(4.96-13.94) -0.47∗∗
LF
HF Welch

1.59(1.2-2.07) 2.28(1.69-3.51) 3.86(1.85-4.99) 0.52∗∗
LF
HF SPWD

1.3(1.19-1.51) 1.8(1.48-2.26) 2.89(1.35-3.25) 0.57∗∗
LF
HF Wavelet

2.36(1.89-2.99) 3.23(2.95-3.84) 4.67(3.02-5.3) 0.48∗∗
LF

LF+HF Welch
61.12(53.47-66.49) 69.5(62.38-77.32) 79.32(64.9-83.31) 0.41∗∗

LF
LF+HF SPWD

56.49(54.27-60.15) 64.06(59.6-69.35) 74.27(57.44-76.58) 0.49∗∗
LF

LF+HF Wavelet
70.22(65.4-74.94) 76.37(73.75-78.74) 82.34(75.1-84.11) 0.37∗∗

LF
LF+V LF Welch

7.28(4.92-9.1) 9.2(4.99-14.83) 15.38(14.34-18.08) 0.55∗∗
LF

LF+V LF SPWD
10.86(8.03-13.38) 10.86(7.2-17.11) 19.63(18.13-23.51) 0.52∗∗

LF
LF+V LF Wavelet

2.57(1.13-3.97) 3.34(2.19-8.97) 10.96(6.69-16.78) 0.64∗∗
Fractal features in the within-bradycardia (WB) group.

Hexp,[j1,j2=5,12] 0.61(0.49-0.71) 0.55(0.43-0.62) 0.49(0.43-0.52) -0.45∗∗
C2,[j1,j2=5,12] -0.26(-0.3- -0.21) -0.21(-0.24- -0.17) -0.13(-0.18- -0.11) 0.54∗∗
Hexp,[j1,j2=3,12] 0.66(0.62-0.71) 0.64(0.58-0.68) 0.61(0.58-0.62) -0.36∗∗
C2,[j1,j2=3,12] -0.15(-0.2- -0.12) -0.14(-0.17- -0.11) -0.11(-0.12- -0.09) 0.31∗
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